Solutions to Assignment \#17

1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a function satisfying

$$
f\binom{1}{0}=\binom{-2}{3}, f\binom{0}{1}=\binom{5}{1} \text { and } f\binom{1}{1}=\binom{3}{2}
$$

(a) Show that f cannot be linear.

Solution: If f was linear, then we would have that

$$
\begin{aligned}
f\binom{1}{1} & =f\left(\binom{1}{0}+\binom{0}{1}\right) \\
& =f\binom{1}{0}+f\binom{0}{1} \\
& =\binom{-2}{3}+\binom{5}{1} \\
& =\binom{3}{4}
\end{aligned}
$$

which is not the same as $\binom{3}{2}$, which was given in the problem. Hence, f cannot be linear.
(b) What would $f\binom{1}{1}$ be if f was a linear function?

Solution: Use the calculation in part (a) above that

$$
f\binom{1}{1}=\binom{3}{4}
$$

2. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear function satisfying

$$
T\binom{2}{1}=\left(\begin{array}{r}
2 \\
3 \\
-1
\end{array}\right) \quad \text { and } \quad T\binom{1}{2}=\left(\begin{array}{r}
-5 \\
1 \\
1
\end{array}\right)
$$

(a) Find the matrix representation for T relative to the standard bases in \mathbb{R}^{2} and \mathbb{R}^{3}.

Solution: We need to find $T\left(e_{1}\right)$ and $T\left(e_{2}\right)$, where $\left\{e_{1}, e_{2}\right\}$ denotes the standard basis in \mathbb{R}^{2}. Observe that, since T is linear,

$$
T\binom{2}{1}=T\left(2 e_{1}+e_{2}\right)=2 T\left(e_{1}\right)+T\left(e_{2}\right)
$$

and

$$
T\binom{1}{2}=T\left(e_{1}+2 e_{2}\right)=T\left(e_{1}\right)+2 T\left(e_{2}\right)
$$

We then have that

$$
2 T\left(e_{1}\right)+T\left(e_{2}\right)=\left(\begin{array}{r}
2 \tag{1}\\
3 \\
-1
\end{array}\right)
$$

and

$$
T\left(e_{1}\right)+2 T\left(e_{2}\right)=\left(\begin{array}{r}
-5 \tag{2}\\
1 \\
1
\end{array}\right)
$$

Solving for $T\left(e_{2}\right)$ in (1) and substituting into 2 yields

$$
T\left(e_{1}\right)+2\left(\left(\begin{array}{r}
2 \\
3 \\
-1
\end{array}\right)-2 T\left(e_{1}\right)\right)=\left(\begin{array}{r}
-5 \\
1 \\
1
\end{array}\right),
$$

or

$$
T\left(e_{1}\right)+\left(\begin{array}{r}
4 \\
6 \\
-2
\end{array}\right)-4 T\left(e_{1}\right)=\left(\begin{array}{r}
-5 \\
1 \\
1
\end{array}\right)
$$

which simplifies to

$$
-3 T\left(e_{1}\right)=\left(\begin{array}{r}
-9 \\
-5 \\
3
\end{array}\right)
$$

We therefore get that

$$
T\left(e_{1}\right)=\left(\begin{array}{c}
3 \tag{3}\\
5 / 3 \\
-1
\end{array}\right)
$$

Substituting the value of $T\left(e_{2}\right)$ into (1) then yields

$$
\left(\begin{array}{c}
6 \\
10 / 3 \\
-2
\end{array}\right)+T\left(e_{2}\right)=\left(\begin{array}{r}
2 \\
3 \\
-1
\end{array}\right)
$$

so that

$$
T\left(e_{2}\right)=\left(\begin{array}{c}
-4 \tag{4}\\
-1 / 3 \\
1
\end{array}\right)
$$

Combining (3) and (4) into the matrix representation for T then yields

$$
M_{T}=\left(\begin{array}{cc}
3 & -4 \tag{5}\\
5 / 3 & -1 / 3 \\
-1 & 1
\end{array}\right)
$$

(b) Give formula for computing $T\binom{x}{y}$ for any $\binom{x}{y}$ in \mathbb{R}^{2}.

Solution:

$$
T\binom{x}{y}=M_{T}\binom{x}{y}=\left(\begin{array}{c}
3 x-4 y \\
5 x / 3-y / 3 \\
-x+y
\end{array}\right)
$$

(c) Compute $T\binom{4}{7}$.

Answer:

$$
T\binom{4}{7}=\left(\begin{array}{c}
-16 \\
13 / 3 \\
3
\end{array}\right)
$$

3. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote the linear transformation defined in Problem 2 .
(a) Determine the image, $\mathcal{I}_{T}=\left\{w \in \mathbb{R}^{3} \mid w=T(v)\right.$ for some $\left.v \in \mathbb{R}^{2}\right\}$, of T.

Solution: Since T is linear, the image of T is the span of the columns of the matrix M_{T} given in (5); that is,

$$
\mathcal{I}_{T}=\operatorname{span}\left\{\left(\begin{array}{c}
3 \\
5 / 3 \\
-1
\end{array}\right),\left(\begin{array}{c}
-4 \\
-1 / 3 \\
1
\end{array}\right)\right\} .
$$

(b) Find a basis for \mathcal{I}_{T} and compute $\operatorname{dim}\left(\mathcal{I}_{T}\right)$.

Solution: Since the set

$$
\left\{\left(\begin{array}{c}
3 \\
5 / 3 \\
-1
\end{array}\right),\left(\begin{array}{c}
-4 \\
-1 / 3 \\
1
\end{array}\right)\right\}
$$

is also linearly independent, it forms a basis for \mathcal{I}_{T} and therefore $\operatorname{dim}\left(\mathcal{I}_{T}\right)=2$.
4. The projection $P_{u}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ onto the direction of the unit vector u in \mathbb{R}^{3} is given by

$$
P_{u}(v)=\langle v, u\rangle u \quad \text { for all } v \in \mathbb{R}^{3},
$$

where $\langle\cdot, \cdot\rangle$ denotes the Euclidean inner product in \mathbb{R}^{3}. We proved in class that P_{u} is a linear function.
(a) For $u=\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$, give the matrix representation for P_{u} relative to the standard basis in \mathbb{R}^{3}.

Solution: We compute

$$
P_{u}\left(e_{1}\right)=\left\langle e_{1}, u\right\rangle u=\frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
1 / 3 \\
1 / 3 \\
1 / 3
\end{array}\right)
$$

Similarly,

$$
P_{u}\left(e_{2}\right)=\left(\begin{array}{l}
1 / 3 \\
1 / 3 \\
1 / 3
\end{array}\right)
$$

and

$$
P_{u}\left(e_{3}\right)=\left(\begin{array}{l}
1 / 3 \\
1 / 3 \\
1 / 3
\end{array}\right)
$$

We then get that the matrix representation of P_{u} relative to the standard basis in \mathbb{R}^{3} is

$$
M_{P_{u}}=\left(\begin{array}{lll}
1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3
\end{array}\right)
$$

(b) For u as defined in the previous part, determine the null space,

$$
\mathcal{N}_{P_{u}}=\left\{v \in \mathbb{R}^{3} \mid P_{u}(v)=\mathbf{0}\right\},
$$

of P_{u}.
Solution: To find the null space of P_{u}, we solve the homogeneous system

$$
\left(\begin{array}{lll}
1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

This leads to the single equation in three unknowns

$$
x_{1}+x_{2}+x_{3}=0,
$$

which can be solved to yield

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
t+s \\
-t \\
-s
\end{array}\right),
$$

where t and s are arbitrary parameters and therefore

$$
\mathcal{N}_{P_{u}}=\operatorname{span}\left\{\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right)\right\} .
$$

(c) Find a basis for $\mathcal{N}_{P_{u}}$ and compute $\operatorname{dim}\left(\mathcal{N}_{P_{u}}\right)$.

Solution: Since the set

$$
\left\{\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right)\right\}
$$

is a linearly independent subset of \mathbb{R}^{3}, it follows from the previous part in this problem that it is a basis for $\mathcal{N}_{P_{u}}$ and therefore $\operatorname{dim}\left(\mathcal{N}_{P_{u}}\right)=2$.
5. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $R: \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$ denote two linear functions. The composition of R and T, denoted by $R \circ T$, is the function $R \circ T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ defined by

$$
R \circ T(v)=R(T(v)) \quad \text { for all } \quad v \in \mathbb{R}^{n} .
$$

(a) Prove that the composition $R \circ T$ is a linear function from \mathbb{R}^{n} to \mathbb{R}^{k}.

Solution: Assume that both T and R are linear functions. We prove that the composition $R \circ T$ is a linear function as well by showing that
(i) $R \circ T(c v)=c R \circ T(v)$ for all $v \in \mathbb{R}^{n}$ and all scalars c, and
(ii) $R \circ T(v+w)=R \circ T(v)+R \circ T(w)$ for all $v, w \in \mathbb{R}^{n}$.

In fact, for $v, w \in \mathbb{R}^{n}$ we have that

$$
R \circ T(v+w)=R(T(v+w))=R(T(v)+T(w)),
$$

since T is linear (here we used property (ii) in the definition of linearity for T). Applying next the linearity of R, we then get that

$$
R \circ T(v+w)=R(T(v))+R(T(w))=R \circ T(v)+R \circ T(w)
$$

This verifies condition (ii).
We verify condition (i) in a similar way:

$$
R \circ T(c v)=R(T(c v))=R(c T(v))=c R(T(v))=c R \circ T(v) .
$$

(b) Show that $\mathcal{N}_{T} \subseteq \mathcal{N}_{R \circ T}$.

Solution: Let $v \in \mathcal{N}_{T}$. Then,

$$
T(v)=\mathbf{0} .
$$

Applying R on both sides we then get

$$
R(T(v))=R(\mathbf{0})=\mathbf{0}
$$

or

$$
R \circ T(v)=\mathbf{0},
$$

which shows that $v \in \mathcal{N}_{R \circ T}$.
(c) Show that $\mathcal{I}_{R \circ T} \subseteq \mathcal{I}_{R}$.

Solution: Let $w \in \mathcal{I}_{R \circ T}$. Then, there exists $v \in \mathbb{R}^{n}$ such that

$$
w=R \circ T(v)
$$

or

$$
w=R(T(v)),
$$

which shows that $w \in \mathcal{I}_{R}$, since w is the image of $T(v)$ under R.

