Solutions to Assignment \#18

1. Given two vector-valued functions, T and R, from \mathbb{R}^{n} to \mathbb{R}^{m}, we can define the sum, $T+R$, of T and R by

$$
(T+R)(v)=T(v)+R(v) \quad \text { for all } v \in \mathbb{R}^{n}
$$

(a) Verify that, if both T and R are linear, then so is $T+R$.

Solution: We need to verify that
(i) $(T+R)(c v)=c(T+R)(v)$ for all $v \in \mathbb{R}^{n}$ and all scalars c, and
(ii) $(T+R)(v+w)=(T+R)(v)+(T+R)(w)$ for all $v, w \in \mathbb{R}^{n}$.

To verify (i), compute

$$
(T+R)(c v)=T(c v)+R(c v)=c T(v)+c R(v)
$$

since T and R are linear. It then follows that

$$
(T+R)(c v)=c(T(v)+R(v))=c(T+R)(v)
$$

which shows (i).
Next, compute
$(T+R)(v+w)=T(v+w)+R(v+w)=T(v)+T(w)+R(v)+R(w)$,
since T and R are linear. Using the commutative and associative properties of vector addition we then get that

$$
\begin{aligned}
(T+R)(v+w) & =(T(v)+R(v))+(T(w)+R(w)) \\
& =(T+R)(v)+(T+R)(w)
\end{aligned}
$$

which is (ii).
(b) Explain how to define the scalar multiple $a T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ of a vector valued function, $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, where a is a scalar and verify that if T is linear then so is $a T$.

Solution: Define $a T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ by

$$
(a T)(v)=a(T(v)) \quad \text { for all } v \in \mathbb{R}^{n} .
$$

We verify that
(i) $(a T)(c v)=c(a T)(v)$ for all $v \in \mathbb{R}^{n}$ and all scalars c, and
(ii) $(a T)(v+w)=(a T)(v)+(a T)(w)$ for all $v, w \in \mathbb{R}^{n}$.

To verify (i) compute

$$
(a T)(c v)=a(T(c v))=a(c T(v))
$$

since T is linear; therefore, by the associativity and commutativity of multiplication of real numbers,

$$
(a T)(c v)=(a c) T(v)=(c a) T(v)=c(a T(v))=c(a T)(v)
$$

which verifies (i).
To verify (ii), compute

$$
(a T)(v+w)=a(T(v+w))=a(T(v)+T(w))
$$

since T is linear. Thus, by the distributive property,

$$
(a T)(v+w)=a(T(v))+a(T(w))=(a T)(v)+(a T)(w)
$$

which is (ii).
2. The identity function, $I: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, is defined by

$$
I(v)=v \quad \text { for all } v \in \mathbb{R}^{n} .
$$

(a) Verify that $I: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear transformation.

Solution: Compute

$$
I(c v)=c v=c I(v)
$$

and

$$
I(v+w)=v+w=I(v)+I(w)
$$

(b) Give the matrix representation of I relative to the standard basis in \mathbb{R}^{n}.

Solution: Compte $I\left(e_{j}\right)=e_{j}$ for $j=1,2, \ldots n$. Then,

$$
\begin{aligned}
M_{I} & =\left[\begin{array}{llll}
I\left(e_{1}\right) & I\left(e_{2}\right) & \cdots & I\left(e_{n}\right)
\end{array}\right] \\
& =\left[\begin{array}{llll}
e_{1} & e_{2} & \cdots & e_{n}
\end{array}\right] \\
& =I
\end{aligned}
$$

where the last I denotes the $n \times n$ identity matrix. Thus, the matrix representation of the identity function if the identity matrix.
(c) Compute the null space, \mathcal{N}_{I}, and image, \mathcal{I}_{I}, of I.

Solution: Note that if v is a solution of $I(v)=\mathbf{0}$, then $v=\mathbf{0}$. It then follows that

$$
\mathcal{N}_{I}=\{\mathbf{0}\} .
$$

Observe that for every $w \in \mathbb{R}^{n}, w=I(w)$. It then follows that

$$
\mathcal{I}_{I}=\mathbb{R}^{n}
$$

3. The zero function, $O: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, is defined by

$$
O(v)=\mathbf{0} \quad \text { for all } v \in \mathbb{R}^{n}
$$

(a) Verify that $O: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation.

Solution: Compute

$$
C(c v)=\mathbf{0}=c \mathbf{0}=c O(v)
$$

and

$$
O(v+w)=\mathbf{0}=\mathbf{0}+\mathbf{0}=O(v)+O(v)
$$

(b) Give the matrix representation of O relative to the standard bases in \mathbb{R}^{n} and \mathbb{R}^{m}.

Solution: Compte $O\left(e_{j}\right)=\mathbf{0}$ for $j=1,2, \ldots n$. Then,

$$
\begin{aligned}
M_{O} & =\left[\begin{array}{llll}
O\left(e_{1}\right) & O\left(e_{2}\right) & \cdots & O\left(e_{n}\right)
\end{array}\right] \\
& =\left[\begin{array}{llll}
\mathbf{0} & \mathbf{0} & \cdots & \mathbf{0}
\end{array}\right] \\
& =O
\end{aligned}
$$

where the last O denotes the $n \times n$ zero matrix. Thus, the matrix representation of the zero function if the zero matrix.
(c) Compute the null space, \mathcal{N}_{O}, and image, \mathcal{I}_{O}, of O.

Solution: Note that $O(v)=\mathbf{0}$. for all $v \in \mathbb{R}^{n}$; thus,

$$
\mathcal{N}_{O}=\mathbb{R}^{n}
$$

Since $O(v)=\mathbf{0}$ for all $v \in \mathbb{R}^{n}$, every vector in \mathbb{R}^{n} gets mapped to 0. Therefore,

$$
\mathcal{I}_{O}=\{\mathbf{0}\} .
$$

4. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ denote a linear function and let $M_{T} \in \mathbb{M}(m, n)$ be its matrix representation with respect to the standard bases in \mathbb{R}^{n} and \mathbb{R}^{m}.
(a) Prove that the null space of T, \mathcal{N}_{T}, is the null space of the matrix M_{T}.

Solution: Observe that

$$
\begin{array}{lll}
v \in \mathcal{N}_{T} & \text { iff } & T(v)=\mathbf{0} \\
& \text { iff } & M_{T} v=\mathbf{0} \\
& \text { iff } & v \in \mathcal{N}_{M_{T}} .
\end{array}
$$

Thus, $\mathcal{N}_{T}=\mathcal{N}_{M_{T}}$.
(b) Prove that the image of T, \mathcal{I}_{T}, is the span of the columns of the matrix M_{T}.

Solution: Observe that

$$
\begin{array}{lll}
w \in \mathcal{I}_{T} & \text { iff } \quad w=T(v) \text { for some } v \in \mathbb{R}^{n} \\
& \text { iff } w=M_{T} v \\
& \text { iff } \quad w \in \operatorname{span}\left\{M_{T} e_{1}, M_{T} e_{2}, \ldots, M_{T} e_{n}\right\} .
\end{array}
$$

Thus, \mathcal{I}_{T} is the span of the columns of M_{T}.
5. If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a function, we can define the iterates, T^{k}, of T, where k is a positive integer, as follows:

$$
T^{2}=T \circ T
$$

That is, T is the composition of T with itself. Next, define

$$
T^{3}=T^{2} \circ T
$$

and so on. More precisely, once we have defined T^{k-1} for $k>1$, we can define T^{k} by

$$
T^{k}=T^{k-1} \circ T
$$

(a) Prove that if T is a linear function from \mathbb{R}^{n} to \mathbb{R}^{n}, then so are the functions T^{k} for $k=1,2, \ldots$

Solution: This result follows from the fact that compositions of linear functions are linear.
(b) Prove that T^{m} and T^{k} commute with each other; that is,

$$
T^{m} \circ T^{k}=T^{k} \circ T^{m}
$$

where k and m are positive integers.
Solution: By the associativity of composition we have that

$$
T^{m} \circ T^{k}=T^{m+k}=T^{k+m}=T^{k} \circ T^{m}
$$

(c) Given $v \in \mathbb{R}^{n}$, prove that the set

$$
\left\{v, T(v), T^{2}(v), \ldots, T^{n}(v)\right\}
$$

is linearly dependent.
Solution: Note that $\left\{v, T(v), T^{2}(v), \ldots, T^{n}(v)\right\}$ is subset of \mathbb{R}^{n} with $n+1$ elements. Thus, since $\operatorname{dim}\left(\mathbb{R}^{n}\right)=n$, it follows that $\left\{v, T(v), T^{2}(v), \ldots, T^{n}(v)\right\}$ is linearly dependent.

