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Solutions to Assignment #18

1. Given two vector–valued functions, T and R, from Rn to Rm, we can define the
sum, T + R, of T and R by

(T + R)(v) = T (v) + R(v) for all v ∈ Rn.

(a) Verify that, if both T and R are linear, then so is T + R.

Solution: We need to verify that

(i) (T + R)(cv) = c(T + R)(v) for all v ∈ Rn and all scalars c,
and

(ii) (T + R)(v + w) = (T + R)(v) + (T + R)(w) for all v, w ∈ Rn.

To verify (i), compute

(T + R)(cv) = T (cv) + R(cv) = cT (v) + cR(v),

since T and R are linear. It then follows that

(T + R)(cv) = c(T (v) + R(v)) = c(T + R)(v),

which shows (i).
Next, compute

(T+R)(v+w) = T (v+w)+R(v+w) = T (v)+T (w)+R(v)+R(w),

since T and R are linear. Using the commutative and associative
properties of vector addition we then get that

(T + R)(v + w) = (T (v) + R(v)) + (T (w) + R(w))
= (T + R)(v) + (T + R)(w),

which is (ii). �

(b) Explain how to define the scalar multiple aT : Rn → Rm of a vector valued
function, T : Rn → Rm, where a is a scalar and verify that if T is linear
then so is aT .

Solution: Define aT : Rn → Rm by

(aT )(v) = a(T (v)) for all v ∈ Rn.

We verify that
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(i) (aT )(cv) = c(aT )(v) for all v ∈ Rn and all scalars c, and

(ii) (aT )(v + w) = (aT )(v) + (aT )(w) for all v, w ∈ Rn.

To verify (i) compute

(aT )(cv) = a(T (cv)) = a(cT (v)),

since T is linear; therefore, by the associativity and commutativity
of multiplication of real numbers,

(aT )(cv) = (ac)T (v) = (ca)T (v) = c(aT (v)) = c(aT )(v),

which verifies (i).
To verify (ii), compute

(aT )(v + w) = a(T (v + w)) = a(T (v) + T (w)),

since T is linear. Thus, by the distributive property,

(aT )(v + w) = a(T (v)) + a(T (w)) = (aT )(v) + (aT )(w),

which is (ii). �

2. The identity function, I : Rn → Rn, is defined by

I(v) = v for all v ∈ Rn.

(a) Verify that I : Rn → Rn is a linear transformation.

Solution: Compute

I(cv) = cv = cI(v)

and
I(v + w) = v + w = I(v) + I(w).

�

(b) Give the matrix representation of I relative to the standard basis in Rn.

Solution: Compte I(ej) = ej for j = 1, 2, . . . n. Then,

MI =
[
I(e1) I(e2) · · · I(en)

]
=

[
e1 e2 · · · en

]
= I,

where the last I denotes the n×n identity matrix. Thus, the ma-
trix representation of the identity function if the identity matrix.
�
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(c) Compute the null space, NI , and image, II , of I.

Solution: Note that if v is a solution of I(v) = 0, then v = 0. It
then follows that

NI = {0}.

Observe that for every w ∈ Rn, w = I(w). It then follows that

II = Rn.

�

3. The zero function, O : Rn → Rm, is defined by

O(v) = 0 for all v ∈ Rn.

(a) Verify that O : Rn → Rm is a linear transformation.

Solution: Compute

C(cv) = 0 = c0 = cO(v)

and
O(v + w) = 0 = 0 + 0 = O(v) + O(v).

�

(b) Give the matrix representation of O relative to the standard bases in Rn

and Rm.

Solution: Compte O(ej) = 0 for j = 1, 2, . . . n. Then,

MO =
[
O(e1) O(e2) · · · O(en)

]
=

[
0 0 · · · 0

]
= O,

where the last O denotes the n×n zero matrix. Thus, the matrix
representation of the zero function if the zero matrix. �

(c) Compute the null space, NO, and image, IO, of O.
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Solution: Note that O(v) = 0. for all v ∈ Rn; thus,

NO = Rn.

Since O(v) = 0 for all v ∈ Rn, every vector in Rn gets mapped to
0. Therefore,

IO = {0}.
�

4. Let T : Rn → Rm denote a linear function and let MT ∈M(m,n) be its matrix
representation with respect to the standard bases in Rn and Rm.

(a) Prove that the null space of T , NT , is the null space of the matrix MT .

Solution: Observe that

v ∈ NT iff T (v) = 0
iff MTv = 0
iff v ∈ NMT

.

Thus, NT = NMT
. �

(b) Prove that the image of T , IT , is the span of the columns of the matrix
MT .

Solution: Observe that

w ∈ IT iff w = T (v) for some v ∈ Rn

iff w = MTv
iff w ∈ span{MT e1,MT e2, . . . ,MT en}.

Thus, IT is the span of the columns of MT . �

5. If T : Rn → Rn is a function, we can define the iterates, T k, of T , where k is a
positive integer, as follows:

T 2 = T ◦ T ;

That is, T is the composition of T with itself. Next, define

T 3 = T 2 ◦ T

and so on. More precisely, once we have defined T k−1 for k > 1, we can define
T k by

T k = T k−1 ◦ T.



Math 60. Rumbos Fall 2014 5

(a) Prove that if T is a linear function from Rn to Rn, then so are the functions
T k for k = 1, 2, . . .

Solution: This result follows from the fact that compositions of
linear functions are linear. �

(b) Prove that Tm and T k commute with each other; that is,

Tm ◦ T k = T k ◦ Tm,

where k and m are positive integers.

Solution: By the associativity of composition we have that

Tm ◦ T k = Tm+k = T k+m = T k ◦ Tm.

�

(c) Given v ∈ Rn, prove that the set

{v, T (v), T 2(v), . . . , T n(v)}

is linearly dependent.

Solution: Note that {v, T (v), T 2(v), . . . , T n(v)} is subset of Rn

with n + 1 elements. Thus, since dim(Rn) = n, it follows that
{v, T (v), T 2(v), . . . , T n(v)} is linearly dependent. �


