## Assignment \#19

Due on Monday, November 17, 2014
Read Section 4.3 on Matrix Representation of Linear Functions in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 4.4, on Compositions, in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 2.6 on The Inverse of a Linear Transformation in Damiano and Little (pp. 114-120)

## Background and Definitions

- One-to-One Functions. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be injective, or one-to-one, if and only if $f(v)=f(u)$ implies that $v=u$.
- Onto Functions. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be surjective, or onto, if and only if for every $w \in \mathbb{R}^{m}$, there exists a vector $v \in \mathbb{R}^{n}$ such that $f(v)=w$.
- Invertible Functions. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be bijective, or invertible, if and only if $f$ is one-to-one and onto.
If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is invertible, we can define the inverse function $f^{-1}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ by means of $f^{-1}(w)=v$ if and only if $w=f(v)$.

Do the following problems

1. Assume that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear. Prove that $T$ is one-to-one if and only if $\mathcal{N}_{T}=\{\mathbf{0}\}$, where $\mathcal{N}_{T}$ denotes the null space. or kernel, of $T$
2. Assume that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear, and let $M_{T}$ denote the matrix representation of $T$ relative to the standard bases $\mathcal{E}_{n}$ and $\mathcal{E}_{m}$ of $\mathbb{R}^{n}$ and $\mathbb{R}^{m}$, respectively.
Prove that $T$ is one-to-one if and only if the columns of $M_{T}$ are linearly independent in $\mathbb{R}^{m}$.
3. Assume that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear, and let $M_{T}$ denote the matrix representation of $T$ relative to the standard bases $\mathcal{E}_{n}$ and $\mathcal{E}_{m}$ of $\mathbb{R}^{n}$ and $\mathbb{R}^{m}$, respectively.
Prove that $T$ is onto if and only if the columns of $M_{T}$ span $\mathbb{R}^{m}$.
4. Assume that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear. Prove that if $T$ is invertible, then the inverse function $T^{-1}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a linear transformation.
5. Assume that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear. Prove that if $T$ is invertible, then $m=n$.
