Assignment #19

Due on Monday, November 17, 2014

Read Section 4.3 on *Matrix Representation of Linear Functions* in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 4.4, on *Compositions*, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 2.6 on *The Inverse of a Linear Transformation* in Damiano and Little (pp. 114–120)

Background and Definitions

- One-to-One Functions. A function $f \colon \mathbb{R}^n \to \mathbb{R}^m$ is said to be injective, or one-to-one, if and only if f(v) = f(u) implies that v = u.
- Onto Functions. A function $f \colon \mathbb{R}^n \to \mathbb{R}^m$ is said to be surjective, or onto, if and only if for every $w \in \mathbb{R}^m$, there exists a vector $v \in \mathbb{R}^n$ such that f(v) = w.
- Invertible Functions. A function $f \colon \mathbb{R}^n \to \mathbb{R}^m$ is said to be bijective, or invertible, if and only if f is one-to-one and onto.

If $f: \mathbb{R}^n \to \mathbb{R}^m$ is invertible, we can define the inverse function $f^{-1}: \mathbb{R}^m \to \mathbb{R}^n$ by means of $f^{-1}(w) = v$ if and only if w = f(v).

Do the following problems

- 1. Assume that $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear. Prove that T is one-to-one if and only if $\mathcal{N}_T = \{\mathbf{0}\}$, where \mathcal{N}_T denotes the null space. or kernel, of T
- 2. Assume that $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear, and let M_T denote the matrix representation of T relative to the standard bases \mathcal{E}_n and \mathcal{E}_m of \mathbb{R}^n and \mathbb{R}^m , respectively. Prove that T is one-to-one if and only if the columns of M_T are linearly independent in \mathbb{R}^m .
- 3. Assume that $T : \mathbb{R}^n \to \mathbb{R}^m$ is linear, and let M_T denote the matrix representation of T relative to the standard bases \mathcal{E}_n and \mathcal{E}_m of \mathbb{R}^n and \mathbb{R}^m , respectively. Prove that T is onto if and only if the columns of M_T span \mathbb{R}^m .
- 4. Assume that $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear. Prove that if T is invertible, then the inverse function $T^{-1}: \mathbb{R}^m \to \mathbb{R}^n$ is a linear transformation.
- 5. Assume that $T \colon \mathbb{R}^n \to \mathbb{R}^m$ is linear. Prove that if T is invertible, then m = n.