Solutions to Assignment \#19

1. Assume that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear. Prove that T is one-to-one if and only if $\mathcal{N}_{T}=\{\mathbf{0}\}$, where \mathcal{N}_{T} denotes the null space. or kernel, of T

Solution: Assume that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear and that T is one-toone. Let $v \in \mathcal{N}_{T}$; then, $T(v)=\mathbf{0}$. Now, $T(\mathbf{0})=\mathbf{0}$, since T is linear. Thus,

$$
T(v)=T(\mathbf{0})
$$

Hence, since T is one-to-one, we obtain that $v=\mathbf{0}$. Therefore, $\mathcal{N}_{T}=\{\mathbf{0}\}$.
Conversely, assume that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear and that $\mathcal{N}_{T}=\{\mathbf{0}\}$. Suppose that

$$
T(v)=T(u) ;
$$

then, using the linearity of T,

$$
T(v)-T(u)=\mathbf{0}
$$

or

$$
T(v-u)=\mathbf{0}
$$

which shows that $v-u \in \mathcal{N}_{T}$. Thus, since $\mathcal{N}_{T}=\{\mathbf{0}\}$,

$$
v-u=\mathbf{0}
$$

from which we get that

$$
v=u
$$

We have therefore shown that

$$
T(v)=T(u) \text { implies that } v=u
$$

that is, T is one-to-one.
2. Assume that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear, and let M_{T} denote the matrix representation of T relative to the standard bases \mathcal{E}_{n} and \mathcal{E}_{m} of \mathbb{R}^{n} and \mathbb{R}^{m}, respectively. Prove that T is one-to-one if and only if the columns of M_{T} are linearly independent in \mathbb{R}^{m}.

Solution: By the result in Problem 1, T is one-to-one if and only if $\mathcal{N}_{T}=\{\mathbf{0}\}$.
Write

$$
M_{T}=\left[\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{n}
\end{array}\right],
$$

where $v_{1}, v_{2}, \ldots, v_{n}$ are the columns of M_{T}, and consider the vector equation

$$
\begin{equation*}
c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}=\mathbf{0} \tag{1}
\end{equation*}
$$

where $\mathbf{0}$ is the zero-vector in \mathbb{R}^{m}. Note that the equation in (1) can be written as

$$
\left[\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{n}
\end{array}\right]\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)=\mathbf{0}
$$

or

$$
M_{T}\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)=\mathbf{0}
$$

or

$$
T\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)=\mathbf{0}
$$

Thus, any solution of (1) must be in the null-space of T. Hence, (1) has only the trivial solution if and only if $\mathcal{N}_{T}=\{\mathbf{0}\}$. We have therefore shown that T is one-to-one if and only if the columns of M_{T} are linearly independent.
3. Assume that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear, and let M_{T} denote the matrix representation of T relative to the standard bases \mathcal{E}_{n} and \mathcal{E}_{m} of \mathbb{R}^{n} and \mathbb{R}^{m}, respectively. Prove that T is onto if and only if the columns of M_{T} span \mathbb{R}^{m}.

Solution: Assume that T is onto. Then, given any $w \in \mathbb{R}^{m}$, there
exists $\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right) \in \mathbb{R}^{n} \quad$ such that

$$
T\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=w
$$

or

$$
M_{T}\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=w
$$

or

$$
x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{n} v_{n}=w,
$$

which shows that $w \in \operatorname{span}\left(\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\right)$. Hence, the set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of columns of M_{T} spans \mathbb{R}^{m}.
Conversely, suppose that $\operatorname{span}\left(\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\right)=\mathbb{R}^{m}$. Then, given any $w \in \mathbb{R}^{m}$, there exists scalars $c_{1}, c_{2}, \ldots, c_{n}$ such that

$$
w=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}
$$

or

$$
w=M_{T}\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right),
$$

or

$$
w=T\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)
$$

Thus, setting $v=\left(\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ c_{n}\end{array}\right)$, we have that $w=T v$. Hence, for every $w \in \mathbb{R}^{m}$ there exists $v \in \mathbb{R}^{n}$ such that $w=T(v)$; that is, T is onto.
4. Assume that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear. Prove that if T is invertible, then the inverse function $T^{-1}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a linear transformation.

Solution: Let w_{1} and w_{2} be vectors in \mathbb{R}^{m} and put $v_{1}=T^{-1}\left(w_{1}\right)$ and $v_{2}=T^{-1}\left(w_{2}\right)$. Then, $v_{1}, v_{2} \in \mathbb{R}^{n}$ and

$$
T\left(v_{1}\right)=w_{1} \quad \text { and } \quad T\left(v_{2}\right)=w_{2} .
$$

Then, since T is linear,

$$
T\left(v_{1}+v_{2}\right)=T\left(v_{1}\right)+T\left(v_{2}\right)
$$

or

$$
\begin{equation*}
T\left(v_{1}+v_{2}\right)=w_{1}+w_{2} . \tag{2}
\end{equation*}
$$

It follows from (2) and the definition of T^{-1} that

$$
T^{-1}\left(w_{1}+w_{2}\right)=v_{1}+v_{2},
$$

or

$$
\begin{equation*}
T^{-1}\left(w_{1}+w_{2}\right)=T^{-1}\left(w_{1}\right)+T^{-1}\left(w_{2}\right) . \tag{3}
\end{equation*}
$$

Next, let $w \in \mathbb{R}^{m}$ and $c \in \mathbb{R}$. Put $v=T^{-1}\left(w\right.$. Then, $v \in \mathbb{R}^{n}$ and $T(v)=w$.
Now, since T is linear

$$
T(c v)=c T(v),
$$

or

$$
\begin{equation*}
T(c v)=c w . \tag{4}
\end{equation*}
$$

It follows from (4) and the definition of T^{-1} that

$$
T^{-1}(c w)=c v,
$$

or

$$
\begin{equation*}
T^{-1}(c w)=c T^{-1}(w) \tag{5}
\end{equation*}
$$

The results in (3) and (5) establish the linearity of T^{-1}.
5. Assume that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear. Prove that if T is invertible, then $m=n$.

Solution: Assume that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear and invertible. Then, T is one-to-one and onto. It then follows from the results in Problem 2 and Problem 3, respectively, that the columns of

$$
M_{T}=\left[\begin{array}{llll}
T\left(e_{1}\right) & T\left(e_{2}\right) & \cdots & T\left(e_{n}\right)
\end{array}\right]
$$

are linearly independent and span \mathbb{R}^{m}. Hence, the set

$$
\left\{T\left(e_{1}\right), T\left(e_{2}\right), \ldots, T\left(e_{n}\right)\right\}
$$

is a basis for \mathbb{R}^{m}. Consequently, $\operatorname{dim}\left(\mathbb{R}^{m}\right)=n$, from which we get that $m=n$.

