Solutions to Assignment #19

1. Assume that $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear. Prove that T is one-to-one if and only if $\mathcal{N}_T = \{\mathbf{0}\}$, where \mathcal{N}_T denotes the null space. or kernel, of T

Solution: Assume that $T : \mathbb{R}^n \to \mathbb{R}^m$ is linear and that T is one-toone. Let $v \in \mathcal{N}_T$; then, $T(v) = \mathbf{0}$. Now, $T(\mathbf{0}) = \mathbf{0}$, since T is linear. Thus,

$$T(v) = T(\mathbf{0}).$$

Hence, since T is one-to-one, we obtain that $v = \mathbf{0}$. Therefore, $\mathcal{N}_T = \{\mathbf{0}\}.$

Conversely, assume that $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear and that $\mathcal{N}_T = \{\mathbf{0}\}$. Suppose that

$$T(v) = T(u);$$

then, using the linearity of T,

$$T(v) - T(u) = \mathbf{0},$$

or

$$T(v-u) = \mathbf{0}$$

which shows that $v - u \in \mathcal{N}_T$. Thus, since $\mathcal{N}_T = \{\mathbf{0}\},\$

$$v-u=\mathbf{0},$$

from which we get that

v = u.

We have therefore shown that

T(v) = T(u) implies that v = u;

that is, T is one-to-one.

2. Assume that $T : \mathbb{R}^n \to \mathbb{R}^m$ is linear, and let M_T denote the matrix representation of T relative to the standard bases \mathcal{E}_n and \mathcal{E}_m of \mathbb{R}^n and \mathbb{R}^m , respectively.

Prove that T is one-to-one if and only if the columns of M_T are linearly independent in \mathbb{R}^m .

Solution: By the result in Problem 1, T is one-to-one if and only if $\mathcal{N}_T = \{\mathbf{0}\}.$

Write

$$M_T = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix},$$

where v_1, v_2, \ldots, v_n are the columns of M_T , and consider the vector equation

$$c_1 v_1 + c_2 v_2 + \dots + c_n v_n = \mathbf{0},\tag{1}$$

where **0** is the zero-vector in \mathbb{R}^m . Note that the equation in (1) can be written as

$$\begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} = \mathbf{0},$$

or

or

$$M_T \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} = \mathbf{0},$$
$$T \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} = \mathbf{0}.$$

Thus, any solution of (1) must be in the null-space of T. Hence, (1) has only the trivial solution if and only if $\mathcal{N}_T = \{\mathbf{0}\}$. We have therefore shown that T is one-to-one if and only if the columns of M_T are linearly independent.

3. Assume that $T : \mathbb{R}^n \to \mathbb{R}^m$ is linear, and let M_T denote the matrix representation of T relative to the standard bases \mathcal{E}_n and \mathcal{E}_m of \mathbb{R}^n and \mathbb{R}^m , respectively. Prove that T is onto if and only if the columns of M_T span \mathbb{R}^m .

Solution: Assume that T is onto. Then, given any $w \in \mathbb{R}^m$, there

exists
$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$$
 such that

$$T \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = w,$$
or

$$M_T \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = w,$$

or

$$x_1v_1 + x_2v_2 + \dots + x_nv_n = w,$$

which shows that $w \in \text{span}(\{v_1, v_2, \ldots, v_n\})$. Hence, the set $\{v_1, v_2, \ldots, v_n\}$ of columns of M_T spans \mathbb{R}^m .

Conversely, suppose that span $(\{v_1, v_2, \ldots, v_n\}) = \mathbb{R}^m$. Then, given any $w \in \mathbb{R}^m$, there exists scalars c_1, c_2, \ldots, c_n such that

$$w = c_1 v_1 + c_2 v_2 + \dots + c_n v_n,$$

or

or

$$w = M_T \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix},$$
$$w = T \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}.$$

Thus, setting $v = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$, we have that w = Tv. Hence, for every $w \in \mathbb{R}^m$ there exists $v \in \mathbb{R}^n$ such that w = T(v); that is, T is onto.

Math 60. Rumbos

4. Assume that $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear. Prove that if T is invertible, then the inverse function $T^{-1}: \mathbb{R}^m \to \mathbb{R}^n$ is a linear transformation.

Solution: Let w_1 and w_2 be vectors in \mathbb{R}^m and put $v_1 = T^{-1}(w_1)$ and $v_2 = T^{-1}(w_2)$. Then, $v_1, v_2 \in \mathbb{R}^n$ and

$$T(v_1) = w_1$$
 and $T(v_2) = w_2$.

Then, since T is linear,

$$T(v_1 + v_2) = T(v_1) + T(v_2),$$

or

$$T(v_1 + v_2) = w_1 + w_2. (2)$$

It follows from (2) and the definition of T^{-1} that

$$T^{-1}(w_1 + w_2) = v_1 + v_2,$$

or

$$T^{-1}(w_1 + w_2) = T^{-1}(w_1) + T^{-1}(w_2).$$
(3)

Next, let $w \in \mathbb{R}^m$ and $c \in \mathbb{R}$. Put $v = T^{-1}(w$. Then, $v \in \mathbb{R}^n$ and T(v) = w.

Now, since T is linear

T(cv) = cT(v),

It follows from (4) and the definition of T^{-1} that

$$T^{-1}(cw) = cv,$$

T(cv) = cw.

or

or

$$T^{-1}(cw) = cT^{-1}(w). (5)$$

The results in (3) and (5) establish the linearity of T^{-1} .

5. Assume that $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear. Prove that if T is invertible, then m = n.

Fall 2014 4

(4)

Solution: Assume that $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear and invertible. Then, T is one-to-one and onto. It then follows from the results in Problem 2 and Problem 3, respectively, that the columns of

$$M_T = \begin{bmatrix} T(e_1) & T(e_2) & \cdots & T(e_n) \end{bmatrix}$$

are linearly independent and span \mathbb{R}^m . Hence, the set

 $\{T(e_1), T(e_2), \ldots, T(e_n)\}$

is a basis for \mathbb{R}^m . Consequently, dim $(\mathbb{R}^m) = n$, from which we get that m = n.