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Solutions to Assignment #19

1. Assume that T : Rn → Rm is linear. Prove that T is one–to–one if and only if
NT = {0}, where NT denotes the null space. or kernel, of T

Solution: Assume that T : Rn → Rm is linear and that T is one–to–
one. Let v ∈ NT ; then, T (v) = 0. Now, T (0) = 0, since T is linear.
Thus,

T (v) = T (0).

Hence, since T is one–to–one, we obtain that v = 0. Therefore,
NT = {0}.
Conversely, assume that T : Rn → Rm is linear and that NT = {0}.
Suppose that

T (v) = T (u);

then, using the linearity of T ,

T (v)− T (u) = 0,

or
T (v − u) = 0,

which shows that v − u ∈ NT . Thus, since NT = {0},

v − u = 0,

from which we get that
v = u.

We have therefore shown that

T (v) = T (u) implies that v = u;

that is, T is one–to–one. �

2. Assume that T : Rn → Rm is linear, and let MT denote the matrix representation
of T relative to the standard bases En and Em of Rn and Rm, respectively.

Prove that T is one–to–one if and only if the columns of MT are linearly inde-
pendent in Rm.
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Solution: By the result in Problem 1, T is one–to–one if and only if
NT = {0}.
Write

MT = [v1 v2 · · · vn],

where v1, v2, . . . , vn are the columns of MT , and consider the vector
equation

c1v1 + c2v2 + · · ·+ cnvn = 0, (1)

where 0 is the zero–vector in Rm. Note that the equation in (1) can
be written as

[v1 v2 · · · vn]


c1
c2
...
cn

 = 0,

or

MT


c1
c2
...
cn

 = 0,

or

T


c1
c2
...
cn

 = 0.

Thus, any solution of (1) must be in the null–space of T . Hence,
(1) has only the trivial solution if and only if NT = {0}. We have
therefore shown that T is one–to–one if and only if the columns of
MT are linearly independent. �

3. Assume that T : Rn → Rm is linear, and let MT denote the matrix representation
of T relative to the standard bases En and Em of Rn and Rm, respectively.

Prove that T is onto if and only if the columns of MT span Rm.

Solution: Assume that T is onto. Then, given any w ∈ Rm, there



Math 60. Rumbos Fall 2014 3

exists


x1

x2
...
xn

 ∈ Rn such that

T


x1

x2
...
xn

 = w,

or

MT


x1

x2
...
xn

 = w,

or
x1v1 + x2v2 + · · ·+ xnvn = w,

which shows that w ∈ span({v1, v2, . . . , vn}). Hence, the set {v1, v2, . . . , vn}
of columns of MT spans Rm.

Conversely, suppose that span({v1, v2, . . . , vn}) = Rm. Then, given
any w ∈ Rm, there exists scalars c1, c2, . . . , cn such that

w = c1v1 + c2v2 + · · ·+ cnvn,

or

w = MT


c1
c2
...
cn

 ,

or

w = T


c1
c2
...
cn

 .

Thus, setting v =


c1
c2
...
cn

 , we have that w = Tv. Hence, for every

w ∈ Rm there exists v ∈ Rn such that w = T (v); that is, T is onto.
�
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4. Assume that T : Rn → Rm is linear. Prove that if T is invertible, then the
inverse function T−1 : Rm → Rn is a linear transformation.

Solution: Let w1 and w2 be vectors in Rm and put v1 = T−1(w1)
and v2 = T−1(w2). Then, v1, v2 ∈ Rn and

T (v1) = w1 and T (v2) = w2.

Then, since T is linear,

T (v1 + v2) = T (v1) + T (v2),

or
T (v1 + v2) = w1 + w2. (2)

It follows from (2) and the definition of T−1 that

T−1(w1 + w2) = v1 + v2,

or
T−1(w1 + w2) = T−1(w1) + T−1(w2). (3)

Next, let w ∈ Rm and c ∈ R. Put v = T−1(w. Then, v ∈ Rn and
T (v) = w.

Now, since T is linear
T (cv) = cT (v),

or
T (cv) = cw. (4)

It follows from (4) and the definition of T−1 that

T−1(cw) = cv,

or
T−1(cw) = cT−1(w). (5)

The results in (3) and (5) establish the linearity of T−1. �

5. Assume that T : Rn → Rm is linear. Prove that if T is invertible, then m = n.
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Solution: Assume that T : Rn → Rm is linear and invertible. Then,
T is one–to–one and onto. It then follows from the results in Problem
2 and Problem 3, respectively, that the columns of

MT = [T (e1) T (e2) · · · T (en)]

are linearly independent and span Rm. Hence, the set

{T (e1), T (e2), . . . , T (en)}

is a basis for Rm. Consequently, dim(Rm) = n, from which we get
that m = n. �


