Solutions to Assignment \#1

1. Let $v_{1}=\binom{1}{2}$ and $v_{2}=\binom{2}{1}$.
(a) Write the vector $v=\binom{1}{1}$ as a linear combination of v_{1} and v_{2}. That is, find scalars c_{1} and c_{2} such that $v=c_{1} v_{1}+c_{2} v_{2}$.

Solution: Find scalars c_{1} and c_{2} such that

$$
c_{1} v_{1}+c_{2} v_{2}=\binom{1}{1}
$$

or

$$
c_{1}\binom{1}{2}+c_{2}\binom{2}{1}=\binom{1}{1}
$$

which may be written as

$$
\binom{c_{1}+2 c_{2}}{2 c_{1}+c_{2}}=\binom{1}{1}
$$

We then get the linear equations in c_{1} and c_{2} :

$$
c_{1}+2 c_{2}=1
$$

and

$$
2 c_{1}+c_{2}=1
$$

Solving for c_{1} in the first equation and substituting into the second equation we obtain the equation

$$
2\left(1-2 c_{2}\right)+c_{2}=1
$$

which can be solved for c_{2} to obtain that

$$
c_{2}=\frac{1}{3} .
$$

We then have that

$$
c_{1}=\frac{1}{3} .
$$

Hence,

$$
\binom{1}{1}=\frac{1}{3} v_{1}+\frac{1}{3} v_{2} .
$$

(b) Write any vector $v=\binom{x}{y}$ in \mathbb{R}^{2} as a linear combination of v_{1} and v_{2}.

Solution: Proceed as in the previous part to find scalars c_{1} and c_{2} such that

$$
c_{1} v_{1}+c_{2} v_{2}=\binom{x}{y}
$$

or

$$
c_{1}\binom{1}{2}+c_{2}\binom{2}{1}=\binom{x}{y}
$$

which may be written as

$$
\binom{c_{1}+2 c_{2}}{2 c_{1}+c_{2}}=\binom{x}{y}
$$

We then get the linear equations in c_{1} and c_{2} :

$$
c_{1}+2 c_{2}=x
$$

and

$$
2 c_{1}+c_{2}=y
$$

Solving for c_{1} in the first equation and substituting into the second equation we obtain the equation

$$
2\left(x-2 c_{2}\right)+c_{2}=y
$$

which can be solved for c_{2} to obtain that

$$
c_{2}=\frac{2}{3} x-\frac{1}{3} y
$$

We then have that

$$
c_{1}=-\frac{1}{3} x+\frac{2}{3} y .
$$

Consequently,

$$
\binom{x}{y}=\left(-\frac{1}{3} x+\frac{2}{3} y\right) v_{1}+\left(\frac{2}{3} x-\frac{1}{3} y\right) v_{2} .
$$

2. In this problem, a, b, c and d denote scalars, and elements in \mathbb{R}^{n} are expressed as row vectors for convenience.
(a) Find a, b and c so that $a(2,3,-1)+b(1,0,4)+c(-3,1,2)=(7,2,5)$, if possible.

Solution: Write

$$
(2 a, 3 a,-a)+(b, 0,4 b)+(-3 c, c, 2 c)=(7,2,5)
$$

or

$$
(2 a+b-3 c, 3 a+c,-a+4 b+2 c)=(7,2,5)
$$

which leads to the system of equations

$$
\begin{cases}2 a+b-3 c & =7 \\ 3 a+c & =2 \\ -a+4 b+2 c & =5\end{cases}
$$

We can solve for c in the second equation and substitute in the first equation to obtain the two equations in a and b :

$$
\left\{\begin{array}{l}
11 a+b=13 \\
-7 a+4 b=1
\end{array}\right.
$$

We can then solve for b in the first equation and substitute in the second to get that

$$
a=1
$$

Therefore,

$$
b=2,
$$

and

$$
c=-1 .
$$

(b) Find a, b, c and d so that

$$
a(1,0,0,0,0)+b(1,1,0,0,0)+c(1,1,1,0,0)+d(1,1,1,1,0)=(8,5,-2,3,0)
$$ if possible.

Solution: Write

$$
(a, 0,0,0,0)+(b, b, 0,0,0)+(c, c, c, 0,0)+(d, d, d, d, 0)=(8,5,-2,3,0)
$$

or

$$
(a+b+c+d, b+c+d, c+d, d, 0)=(8,5,-2,3,0)
$$

which yields the system of linear equations

$$
\begin{cases}a+b+c+d & =8 \\ b+c+d & =5 \\ c+d & =-2 \\ d & =3\end{cases}
$$

We then get that $d=3, c=-5, b=7$ and $a=3$.
3. Show that it is impossible to find scalars a, b, c and d so that $a(1,0,0,0,0)+b(1,1,0,0,0)+c(1,1,1,0,0)+d(1,1,1,1,0)=(8,5,-2,3,1)$.

Solution: Proceeding as in part (b) of the previous problem, we obtain the system of linear equations

$$
\begin{cases}a+b+c+d & =8 \\ b+c+d & =5 \\ c+d & =-2 \\ d & =3 \\ 0 & =1,\end{cases}
$$

where the last equation is impossible. We therefore conclude that that it is impossible to find scalars a, b, c and d so that

$$
a(1,0,0,0,0)+b(1,1,0,0,0)+c(1,1,1,0,0)+d(1,1,1,1,0)=(8,5,-2,3,1)
$$

4. The equation $5 x-2 y+8 z=0$ describes a plane in \mathbb{R}^{3}. Let $\left(a_{1}, a_{2}, a_{3}\right)$ be any point on the plane; that is $5 a_{1}-2 a_{2}+8 a_{3}=0$. Show that the vector $\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)$ is a linear combination of the vectors

$$
\left(\begin{array}{l}
2 \\
5 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
4 \\
1
\end{array}\right)
$$

Solution: Since $\left(a_{1}, a_{2}, a_{3}\right)$ be any point on the plane, it follows that

$$
5 a_{1}-2 a_{2}+8 a_{3}=0
$$

which can be solved for a_{2} as follows

$$
a_{2}=\frac{5}{2} a_{1}+4 a_{3},
$$

where a_{1} and a_{3} are arbitrary. We can therefore set $a_{1}=2 t$ and $a_{3}=s$, where t and s are arbitrary scalars.
We then get that

$$
\left\{\begin{array}{l}
a_{1}=2 t \\
a_{2}=5 t+4 s \\
a_{3}=s
\end{array}\right.
$$

We therefore have that

$$
\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)=\left(\begin{array}{c}
2 t \\
5 t+4 s \\
s
\end{array}\right)=\left(\begin{array}{c}
2 t \\
5 t \\
0
\end{array}\right)+\left(\begin{array}{c}
0 \\
4 s \\
s
\end{array}\right)=t\left(\begin{array}{l}
2 \\
5 \\
0
\end{array}\right)+s\left(\begin{array}{l}
0 \\
4 \\
1
\end{array}\right)
$$

which was to be shown.
5. Let $W=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid\left(x_{1}, x_{2}, x_{3}\right)=c_{1}(2,5,0)+c_{2}(0,4,1)\right\}$ show that if $(x, y, z) \in W$, then $5 x-2 y+8 z=0$. What can you conclude from this and the statement in problem 4?

Solution: Let $(x, y, z) \in W$; then,

$$
(x, y, z)=c_{1}(2,5,0)+c_{2}(0,4,1)
$$

for scalars c_{1} and c_{2}.
We then have that

$$
\left(2 c_{1}, 5 c_{1}, 0\right)+\left(0,4 c_{2}, c_{2}\right)=(x, y, z)
$$

or

$$
\left(2 c_{1}, 5 c_{1}+4 c_{2}, c_{2}\right)=(x, y, z)
$$

which leads to the system of equations

$$
\begin{cases}2 c_{1} & =x \\ 5 c_{1}+4 c_{2} & =y \\ c_{2} & =z\end{cases}
$$

Solving for c_{1} and c_{2} in the first and third equations, respectively, and substituting them in the second yields

$$
5\left(\frac{x}{2}\right)+4 z=y .
$$

Multiplying this equation by 2 and rearranging, yields $5 x-2 y+8 z=0$, which was to be shown.
Combining this result with the result in the previous problem yields that W, the span of the vectors $\left(\begin{array}{l}2 \\ 5 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 4 \\ 1\end{array}\right)$, is the plane given by the equation $5 x-2 y+8 z=0$.

