Assignment \#20

Due on Friday, November 21, 2014
Read Section 4.3 on Matrix Representation of Linear Functions in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 4.4, on Compositions, in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 2.3 on Kernel and Image in Damiano and Little (pp. 84-92)
Read Section 2.4 on Applications of the Dimension Theorem in Damiano and Little (pp. 95-103)

Background and Definitions

- Null Space of a Linear Transformation. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ denote a linear transformation. The null space of T, denoted by \mathcal{N}_{T}, is the set

$$
\mathcal{N}_{T}=\left\{v \in \mathbb{R}^{n} \mid T(v)=\mathbf{0}\right\}
$$

Note: In the text, the null space of T is called the kernel of T, and is denoted by $\operatorname{Ker}(T)$.

- Image. Given a function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, the image of T, denoted by \mathcal{I}_{T}, is the set

$$
\mathcal{I}_{T}=\left\{w \in \mathbb{R}^{m} \mid w=T(v), \text { for some } v \in \mathbb{R}^{n}\right\} .
$$

Note: In the text, the image of T is denoted by $\operatorname{Im}(T)$.
If T is linear, then \mathcal{I}_{T} is a subspace of \mathbb{R}^{m}.

- The Dimension Theorem. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Then,

$$
\begin{equation*}
\operatorname{dim}\left(\mathcal{N}_{T}\right)+\operatorname{dim}\left(\mathcal{I}_{T}\right)=n \tag{1}
\end{equation*}
$$

Do the following problems

1. In this problem and problems (2) and (3) you will be proving the Dimension Theorem as stated in (1).
Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Show that if $\mathcal{N}_{T}=\mathbb{R}^{n}$, then T must be the zero transformation. What is \mathcal{I}_{T} in this case? Verify that (1) holds true in this case.
2. Suppose that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation that is not the zero function. Put $k=\operatorname{dim}\left(\mathcal{N}_{T}\right)$.
(a) Explain why $k<n$.
(b) Let $\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ be a basis for \mathcal{N}_{T}. Show that there exist vectors $v_{1}, v_{2}, \ldots, v_{r}$ in \mathbb{R}^{n} such that $\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{1}, v_{2}, \ldots, v_{r}\right\}$ is a basis for \mathbb{R}^{n}. What is r in terms of n and k ?
3. Let $T, w_{1}, w_{2}, \ldots, w_{k}$ and $v_{1}, v_{2}, \ldots, v_{r}$ be as in Problem 2.
(a) Show that the set $\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{r}\right)\right\}$ is a basis for \mathcal{I}_{T}, the image of T.
(b) Prove the Dimension Theorem.
4. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation.
(a) Prove that T is one-to-one if and only if $\operatorname{dim}\left(\mathcal{I}_{T}\right)=n$.
(b) Prove that T is onto if and only if $\operatorname{dim}\left(\mathcal{I}_{T}\right)=m$.
5. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be given by

$$
T(v)=A v, \quad \text { for all } v \in \mathbb{R}^{3}
$$

where A is the 3×3 matrix given by

$$
A=\left(\begin{array}{rrr}
0 & 1 & 1 \\
-1 & 0 & 1 \\
-1 & -1 & 0
\end{array}\right)
$$

Determine whether or not T is
(a) one-to-one;
(b) onto;
(c) invertible.

