Assignment #20

Due on Friday, November 21, 2014

Read Section 4.3 on *Matrix Representation of Linear Functions* in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 4.4, on *Compositions*, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 2.3 on Kernel and Image in Damiano and Little (pp. 84–92)

Read Section 2.4 on Applications of the Dimension Theorem in Damiano and Little (pp. 95–103)

Background and Definitions

• Null Space of a Linear Transformation. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ denote a linear transformation. The null space of T, denoted by \mathcal{N}_T , is the set

$$\mathcal{N}_T = \{ v \in \mathbb{R}^n \mid T(v) = \mathbf{0} \}.$$

Note: In the text, the null space of T is called the kernel of T, and is denoted by Ker(T).

• Image. Given a function $T : \mathbb{R}^n \to \mathbb{R}^m$, the image of T, denoted by \mathcal{I}_T , is the set

 $\mathcal{I}_T = \{ w \in \mathbb{R}^m \mid w = T(v), \text{ for some } v \in \mathbb{R}^n \}.$

Note: In the text, the image of T is denoted by Im(T).

If T is linear, then \mathcal{I}_T is a subspace of \mathbb{R}^m .

• The Dimension Theorem. Let $T \colon \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then,

$$\dim(\mathcal{N}_T) + \dim(\mathcal{I}_T) = n. \tag{1}$$

Do the following problems

1. In this problem and problems (2) and (3) you will be proving the Dimension Theorem as stated in (1).

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Show that if $\mathcal{N}_T = \mathbb{R}^n$, then T must be the zero transformation. What is \mathcal{I}_T in this case? Verify that (1) holds true in this case.

- 2. Suppose that $T \colon \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation that is not the zero function. Put $k = \dim(\mathcal{N}_T)$.
 - (a) Explain why k < n.
 - (b) Let $\{w_1, w_2, \ldots, w_k\}$ be a basis for \mathcal{N}_T . Show that there exist vectors v_1, v_2, \ldots, v_r in \mathbb{R}^n such that $\{w_1, w_2, \ldots, w_k, v_1, v_2, \ldots, v_r\}$ is a basis for \mathbb{R}^n . What is r in terms of n and k?
- 3. Let T, w_1, w_2, \ldots, w_k and v_1, v_2, \ldots, v_r be as in Problem 2.
 - (a) Show that the set $\{T(v_1), T(v_2), \ldots, T(v_r)\}$ is a basis for \mathcal{I}_T , the image of T.
 - (b) Prove the Dimension Theorem.
- 4. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.
 - (a) Prove that T is one-to-one if and only if $\dim(\mathcal{I}_T) = n$.
 - (b) Prove that T is onto if and only if $\dim(\mathcal{I}_T) = m$.
- 5. Let $T \colon \mathbb{R}^3 \to \mathbb{R}^3$ be given by

$$T(v) = Av$$
, for all $v \in \mathbb{R}^3$,

where A is the 3×3 matrix given by

$$A = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix}.$$

Determine whether or not T is

- (a) one-to-one;
- (b) onto;
- (c) invertible.