Solutions to Assignment #20

1. In this problem and problems (2) and (3) you will be proving the Dimension Theorem

$$\dim(\mathcal{N}_T) + \dim(\mathcal{I}_T) = n,\tag{1}$$

for a linear transformation $T \colon \mathbb{R}^n \to \mathbb{R}^m$.

Show that if $\mathcal{N}_T = \mathbb{R}^n$, then T must be the zero transformation. What is \mathcal{I}_T in this case? Verify that (1) holds true in this case.

Solution: Let $T \colon \mathbb{R}^n \to \mathbb{R}^m$ satisfying $\mathcal{N}_T = \mathbb{R}^n$. Then, $T(v) = \mathbf{0}$ for all $v \in \mathbb{R}^n$, which shows that T is the zero transformation.

Also, since $T(v) = \mathbf{0}$ for all $v \in \mathbb{R}^n$, it follows that $\mathcal{I}_T = \{\mathbf{0}\}$.

Hence, $\dim(\mathcal{N}_T) = n$ and $\dim(\mathcal{I}_T) = 0$. It then follows that

$$\dim(\mathcal{N}_T) + \dim(\mathcal{I}_T) = n + 0 = n,$$

and so the Dimension Theorem (1) holds true in this case.

- 2. Suppose that $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation that is not the zero function. Put $k = \dim(\mathcal{N}_T)$.
 - (a) Explain why k < n. **Solution**: If dim $(\mathcal{N}_T) = n$, then $\mathcal{N}_T = \mathbb{R}^n$, and, therefore,

$$T(v) = \mathbf{0}, \quad \text{for all } v \in \mathbb{R}^n.$$

However, we are assuming that T is not the zero function. Hence, $\dim(\mathcal{N}_T) < n$.

(b) Let $\{w_1, w_2, \ldots, w_k\}$ be a basis for \mathcal{N}_T . Show that there exist vectors v_1, v_2, \ldots, v_r in \mathbb{R}^n such that $\{w_1, w_2, \ldots, w_k, v_1, v_2, \ldots, v_r\}$ is a basis for \mathbb{R}^n . What is r in terms of n and k?

Solution: Let $\{w_1, w_2, \ldots, w_k\}$ be a basis for \mathcal{N}_T . Then k < n by the result in part (a). Thus, there exists $v_1 \in \mathbb{R}^n$ such that $v_2 \notin \text{span}(\{w_1, w_2, \ldots, w_k\})$. We then have that the set

$$\{w_1, w_2, \ldots, w_k, v_1\}$$

is linearly independent.

We consider two possibilities: Either (i) $\operatorname{span}(\{w_1, w_2, \dots, w_k, v_1\}) = \mathbb{R}^n$, or (ii) $\operatorname{span}(\{w_1, w_2, \dots, w_k, v_1\}) \neq \mathbb{R}^n$.

If span($\{w_1, w_2, \ldots, w_k, v_1\}$) = \mathbb{R}^n , then $\{w_1, w_2, \ldots, w_k, v_1\}$ is a basis for \mathbb{R}^n and n = k + 1. If not, there exists $v_2 \in \mathbb{R}^n$ such that

$$v_2 \not\in \operatorname{span}(\{w_1, w_2, \dots, w_k, v_1\}).$$

It then follows that the set

$$\{w_1, w_2, \ldots, w_k, v_1, v_2\}$$

is linearly independent.

Again, we consider two cases: Either (i) $\operatorname{span}(\{w_1, w_2, \ldots, w_k, v_1, v_2\}) = \mathbb{R}^n$, or (ii) $\operatorname{span}(\{w_1, w_2, \ldots, w_k, v_1, v_2\}) \neq \mathbb{R}^n$.

If span($\{w_1, w_2, \ldots, w_k, v_1, v_2\}$) = \mathbb{R}^n , then $\{w_1, w_2, \ldots, w_k, v_1, v_2\}$ is a basis for \mathbb{R}^n and n = k + 2. If not, there exists $v_3 \in \mathbb{R}^n$ such that

$$v_3 \not\in \operatorname{span}(\{w_1, w_2, \dots, w_k, v_1, v_2\}).$$

We continue in this fashion until we get vectors v_1, v_2, \ldots, v_r in \mathbb{R}^n such that the set

$$\{w_1, w_2, \dots, w_k, v_1, v_2, \dots, v_r\}$$
 is linearly independent (2)

and

$$\operatorname{span}(\{w_1, w_2, \dots, w_k, v_1, v_2, \dots, v_r\}) = \mathbb{R}^n.$$
(3)

It follows from (2) and (3) that $\{w_1, w_2, \ldots, w_k, v_1, v_2, \ldots, v_r\}$ is a basis for \mathbb{R}^n and therefore k + r = n, from which we get that r = n - k. \Box

- 3. Let T, w_1, w_2, \ldots, w_k and v_1, v_2, \ldots, v_r be as in Problem 2.
 - (a) Show that the set $\{T(v_1), T(v_2), \ldots, T(v_r)\}$ is a basis for \mathcal{I}_T , the image of T.

Solution: Let $v \in \mathbb{R}^n$. Then, since $\{w_1, w_2, \ldots, w_k, v_1, v_2, \ldots, v_r\}$ is a basis for \mathbb{R}^n , by the result in Problem 2, there exist scalars c_1, c_2, \ldots, c_k and d_1, d_2, \ldots, d_r , such that

$$v = c_1 w_1 + c_2 w_2 + \dots + c_k w_k + d_1 v_1 + d_2 v_2 + \dots + d_r v_r.$$
(4)

Next, apply T on both sides of (4) and use the linearity of T to get

$$T(v) = c_1 T(w_1) + c_2 T(w_2) + \dots + c_k T(w_k) + d_1 T(v_1) + d_2 T(v_2) + \dots + d_r T(v_r),$$

so that

$$T(v) = d_1 T(v_1) + d_2 T(v_2) + \dots + d_r T(v_r),$$
(5)

since $w_1, w_2, \ldots, w_k \in \mathcal{N}_T$. Now, it follows from (5) that

$$T(v) \in \operatorname{span}(\{T(v_1), T(v_2), \dots, T(v_r)\}), \text{ for all } v \in \mathbb{R}^n;$$

consequently,

$$\mathcal{I}_T \subseteq \operatorname{span}(\{T(v_1), T(v_2), \dots, T(v_r)\}).$$
(6)

On the other hand, since \mathcal{I}_T is a subspace of \mathbb{R}^m , it follows that

$$\operatorname{span}(\{T(v_1), T(v_2), \dots, T(v_r)\}) \subseteq \mathcal{I}_T.$$
(7)

Combining (6) and (7) yields

$$\mathcal{I}_T = \operatorname{span}(\{T(v_1), T(v_2), \dots, T(v_r)\})$$

which shows that $\{T(v_1), T(v_2), \ldots, T(v_r)\}$ spans \mathcal{I}_T . Next, we show that $\{T(v_1), T(v_2), \ldots, T(v_r)\}$ is linearly independent. Consider the equation

$$c_1 T(v_1) + c_2 T(v_2) + \dots + c_r T(v_r) = \mathbf{0},$$
 (8)

which, using the linearity of T, can be written as

$$T(c_1v_1 + c_2v_2 + \dots + c_rv_r) = \mathbf{0}$$
(9)

It follows from (9) that $c_1v_1 + c_2v_2 + \cdots + c_rv_r \in \mathcal{N}_T$; so that, there exist scalars d_1, d_2, \ldots, d_k such that

$$c_1v_1 + c_2v_2 + \dots + c_rv_r = d_1w_1 + d_2w_2 + \dots + d_kw_k,$$

which can be rewritten as

$$-d_1w_1 - d_2w_2 - \dots - d_kw_k + c_1v_1 + c_2v_2 + \dots + c_rv_r = \mathbf{0}.$$
 (10)

It follows from (10) and the fact that $\{w_1, w_2, \ldots, w_k, v_1, v_2, \ldots, v_r\}$ is a basis for \mathbb{R}^n that

$$c_1 = c_2 = \dots = c_k = 0,$$

which shows that (8) has only the trivial solution. Hence, the set $\{T(v_1), T(v_2), \ldots, T(v_r)\}$ is linearly independent.

We have therefore shown that $\{T(v_1), T(v_2), \ldots, T(v_r)\}$ is a basis for \mathcal{I}_T .

Math 60. Rumbos

(b) Prove the Dimension Theorem.

Solution: It follows from the result in part (a) that $\dim(\mathcal{I}_T) = r$. Using the result in part (b) of Problem 2 that

$$r = n - k,$$

where $k = \dim(\mathcal{N}_T)$. We then have that

$$\dim(\mathcal{I}_T) = n - \dim(\mathcal{N}_T),$$

from which we get that

$$\dim(\mathcal{N}_T) + \dim(\mathcal{I}_T) = n,$$

which is the Dimension Theorem (1).

- 4. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.
 - (a) Prove that T is one-to-one if and only if $\dim(\mathcal{I}_T) = n$. **Solution**: It follows from the result of Problem 1 in Assignment #19 that T is one-to-one if and only if $\mathcal{N}_T = \{\mathbf{0}\}$; so that, $\dim(\mathcal{N}_T) = 0$. Consequently, it follows from the Dimension Theorem in (1) that T is one-to-one if and only if $\dim(\mathcal{I}_T) = n$.
 - (b) Prove that T is onto if and only if $\dim(\mathcal{I}_T) = m$. **Solution**: It follows from the result of Problem 3 in Assignment #19 that T is onto if and only if $\operatorname{span}(\{T(e_1), T(e_2), \ldots, T(e_n)\}) = \mathbb{R}^m$. Thus, since

$$\operatorname{span}(\{T(e_1), T(e_2), \dots, T(e_n)\}) = \mathcal{I}_T,$$

 $\dim(\mathcal{I}_T) = m.$

5. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be given by

T(v) = Av, for all $v \in \mathbb{R}^3$,

where A is the 3×3 matrix given by

$$A = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix}.$$

Determine whether or not T is

Fall 2014 4

- (a) one-to-one;
- (b) onto;
- (c) invertible.

Solution: First, we compute the null space of T by solving the equation

$$\begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix};$$

this is equivalent to solving the homogeneous system of equations

$$\begin{cases} x_2 + x_3 = 0 \\ -x_1 + x_3 = 0 \\ -x_1 - x_2 = 0 \end{cases}$$
(11)

The system in (11) can be solved by reducing the augmented matrix

$$\begin{pmatrix} 0 & 1 & 1 & | & 0 \\ -1 & 0 & 1 & | & 0 \\ -1 & -1 & 0 & | & 0 \\ \end{pmatrix}, \\ \begin{pmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \\ \end{pmatrix},$$

 to

which shows that the system in (11) has only the trivial solution. Hence,

$$\mathcal{N}_T = \{\mathbf{0}\},$$

and therefore

- (a) T is one-to-one.
- (b) Next, use the Dimension Theorem in (1) to get that $\dim(\mathcal{I}_T) = 3$, which shows that $\mathcal{I}_T = \mathbb{R}^3$, and therefore T is onto.
- (c) Finally, since T is one-to-one and onto, we get that T is invertible.