Solutions to Assignment \#20

1. In this problem and problems (2) and (3) you will be proving the Dimension Theorem

$$
\begin{equation*}
\operatorname{dim}\left(\mathcal{N}_{T}\right)+\operatorname{dim}\left(\mathcal{I}_{T}\right)=n, \tag{1}
\end{equation*}
$$

for a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
Show that if $\mathcal{N}_{T}=\mathbb{R}^{n}$, then T must be the zero transformation. What is \mathcal{I}_{T} in this case? Verify that (1) holds true in this case.
Solution: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ satisfying $\mathcal{N}_{T}=\mathbb{R}^{n}$. Then, $T(v)=\mathbf{0}$ for all $v \in \mathbb{R}^{n}$, which shows that T is the zero transformation.
Also, since $T(v)=\mathbf{0}$ for all $v \in \mathbb{R}^{n}$, it follows that $\mathcal{I}_{T}=\{\mathbf{0}\}$.
Hence, $\operatorname{dim}\left(\mathcal{N}_{T}\right)=n$ and $\operatorname{dim}\left(\mathcal{I}_{T}\right)=0$. It then follows that

$$
\operatorname{dim}\left(\mathcal{N}_{T}\right)+\operatorname{dim}\left(\mathcal{I}_{T}\right)=n+0=n
$$

and so the Dimension Theorem (1) holds true in this case.
2. Suppose that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation that is not the zero function. Put $k=\operatorname{dim}\left(\mathcal{N}_{T}\right)$.
(a) Explain why $k<n$.

Solution: If $\operatorname{dim}\left(\mathcal{N}_{T}\right)=n$, then $\mathcal{N}_{T}=\mathbb{R}^{n}$, and, therefore,

$$
T(v)=\mathbf{0}, \quad \text { for all } v \in \mathbb{R}^{n}
$$

However, we are assuming that T is not the zero function. Hence, $\operatorname{dim}\left(\mathcal{N}_{T}\right)<$ n.
(b) Let $\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ be a basis for \mathcal{N}_{T}. Show that there exist vectors $v_{1}, v_{2}, \ldots, v_{r}$ in \mathbb{R}^{n} such that $\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{1}, v_{2}, \ldots, v_{r}\right\}$ is a basis for \mathbb{R}^{n}. What is r in terms of n and k ?
Solution: Let $\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ be a basis for \mathcal{N}_{T}. Then $k<n$ by the result in part (a). Thus, there exists $v_{1} \in \mathbb{R}^{n}$ such that $v_{2} \notin \operatorname{span}\left(\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}\right)$. We then have that the set

$$
\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{1}\right\}
$$

is linearly independent.

We consider two possibilities: Either (i) $\operatorname{span}\left(\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{1}\right\}\right)=\mathbb{R}^{n}$, or (ii) $\operatorname{span}\left(\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{1}\right\}\right) \neq \mathbb{R}^{n}$.
If $\operatorname{span}\left(\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{1}\right\}\right)=\mathbb{R}^{n}$, then $\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{1}\right\}$ is a basis for \mathbb{R}^{n} and $n=k+1$. If not, there exists $v_{2} \in \mathbb{R}^{n}$ such that

$$
v_{2} \notin \operatorname{span}\left(\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{1}\right\}\right)
$$

It then follows that the set

$$
\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{1}, v_{2}\right\}
$$

is linearly independent.
Again, we consider two cases: Either (i) $\operatorname{span}\left(\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{1}, v_{2}\right\}\right)=$ \mathbb{R}^{n}, or (ii) $\operatorname{span}\left(\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{1}, v_{2}\right\}\right) \neq \mathbb{R}^{n}$.
If $\operatorname{span}\left(\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{1}, v_{2}\right\}\right)=\mathbb{R}^{n}$, then $\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{1}, v_{2}\right\}$ is a basis for \mathbb{R}^{n} and $n=k+2$. If not, there exists $v_{3} \in \mathbb{R}^{n}$ such that

$$
v_{3} \notin \operatorname{span}\left(\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{1}, v_{2}\right\}\right) .
$$

We continue in this fashion until we get vectors $v_{1}, v_{2}, \ldots, v_{r}$ in \mathbb{R}^{n} such that the set

$$
\begin{equation*}
\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{1}, v_{2}, \ldots, v_{r}\right\} \text { is linearly independent } \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{span}\left(\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{1}, v_{2}, \ldots, v_{r}\right\}\right)=\mathbb{R}^{n} \tag{3}
\end{equation*}
$$

It follows from (2) and (3) that $\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{1}, v_{2}, \ldots, v_{r}\right\}$ is a basis for \mathbb{R}^{n} and therefore $k+r=n$, from which we get that $r=n-k$.
3. Let $T, w_{1}, w_{2}, \ldots, w_{k}$ and $v_{1}, v_{2}, \ldots, v_{r}$ be as in Problem 2.
(a) Show that the set $\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{r}\right)\right\}$ is a basis for \mathcal{I}_{T}, the image of T.
Solution: Let $v \in \mathbb{R}^{n}$. Then, since $\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{1}, v_{2}, \ldots, v_{r}\right\}$ is a basis for \mathbb{R}^{n}, by the result in Problem 2 , there exist scalars $c_{1}, c_{2}, \ldots, c_{k}$ and $d_{1}, d_{2}, \ldots, d_{r}$, such that

$$
\begin{equation*}
v=c_{1} w_{1}+c_{2} w_{2}+\cdots c_{k} w_{k}+d_{1} v_{1}+d_{2} v_{2}+\cdots+d_{r} v_{r} \tag{4}
\end{equation*}
$$

Next, apply T on both sides of (4) and use the linearity of T to get
$T(v)=c_{1} T\left(w_{1}\right)+c_{2} T\left(w_{2}\right)+\cdots c_{k} T\left(w_{k}\right)+d_{1} T\left(v_{1}\right)+d_{2} T\left(v_{2}\right)+\cdots+d_{r} T\left(v_{r}\right)$,
so that

$$
\begin{equation*}
T(v)=d_{1} T\left(v_{1}\right)+d_{2} T\left(v_{2}\right)+\cdots+d_{r} T\left(v_{r}\right) \tag{5}
\end{equation*}
$$

since $w_{1}, w_{2}, \ldots, w_{k} \in \mathcal{N}_{T}$.
Now, it follows from (5) that

$$
T(v) \in \operatorname{span}\left(\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{r}\right)\right\}\right), \quad \text { for all } v \in \mathbb{R}^{n}
$$

consequently,

$$
\begin{equation*}
\mathcal{I}_{T} \subseteq \operatorname{span}\left(\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{r}\right)\right\}\right) \tag{6}
\end{equation*}
$$

On the other hand, since \mathcal{I}_{T} is a subspace of \mathbb{R}^{m}, it follows that

$$
\begin{equation*}
\operatorname{span}\left(\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{r}\right)\right\}\right) \subseteq \mathcal{I}_{T} \tag{7}
\end{equation*}
$$

Combining (6) and (7) yields

$$
\mathcal{I}_{T}=\operatorname{span}\left(\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{r}\right)\right\}\right),
$$

which shows that $\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{r}\right)\right\}$ spans \mathcal{I}_{T}.
Next, we show that $\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{r}\right)\right\}$ is linearly independent.
Consider the equation

$$
\begin{equation*}
c_{1} T\left(v_{1}\right)+c_{2} T\left(v_{2}\right)+\cdots+c_{r} T\left(v_{r}\right)=\mathbf{0} \tag{8}
\end{equation*}
$$

which, using the linearity of T, can be written as

$$
\begin{equation*}
T\left(c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{r} v_{r}\right)=\mathbf{0} \tag{9}
\end{equation*}
$$

It follows from (9) that $c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{r} v_{r} \in \mathcal{N}_{T}$; so that, there exist scalars $d_{1}, d_{2}, \ldots, d_{k}$ such that

$$
c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{r} v_{r}=d_{1} w_{1}+d_{2} w_{2}+\cdots+d_{k} w_{k},
$$

which can be rewritten as

$$
\begin{equation*}
-d_{1} w_{1}-d_{2} w_{2}-\cdots-d_{k} w_{k}+c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{r} v_{r}=\mathbf{0} \tag{10}
\end{equation*}
$$

It follows from (10) and the fact that $\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{1}, v_{2}, \ldots, v_{r}\right\}$ is a basis for \mathbb{R}^{n} that

$$
c_{1}=c_{2}=\cdots=c_{k}=0
$$

which shows that (8) has only the trivial solution. Hence, the set $\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{r}\right)\right\}$ is linearly independent.
We have therefore shown that $\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{r}\right)\right\}$ is a basis for \mathcal{I}_{T}.
(b) Prove the Dimension Theorem.

Solution: It follows from the result in part (a) that $\operatorname{dim}\left(\mathcal{I}_{T}\right)=r$. Using the result in part (b) of Problem 2 that

$$
r=n-k,
$$

where $k=\operatorname{dim}\left(\mathcal{N}_{T}\right)$. We then have that

$$
\operatorname{dim}\left(\mathcal{I}_{T}\right)=n-\operatorname{dim}\left(\mathcal{N}_{T}\right)
$$

from which we get that

$$
\operatorname{dim}\left(\mathcal{N}_{T}\right)+\operatorname{dim}\left(\mathcal{I}_{T}\right)=n
$$

which is the Dimension Theorem (1).
4. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation.
(a) Prove that T is one-to-one if and only if $\operatorname{dim}\left(\mathcal{I}_{T}\right)=n$.

Solution: It follows from the result of Problem 1 in Assignment \#19 that T is one-to-one if and only if $\mathcal{N}_{T}=\{\mathbf{0}\}$; so that, $\operatorname{dim}\left(\mathcal{N}_{T}\right)=0$. Consequently, it follows from the Dimension Theorem in (1) that T is one-to-one if and only if $\operatorname{dim}\left(\mathcal{I}_{T}\right)=n$.
(b) Prove that T is onto if and only if $\operatorname{dim}\left(\mathcal{I}_{T}\right)=m$.

Solution: It follows from the result of Problem 3 in Assignment \#19 that T is onto if and only if $\operatorname{span}\left(\left\{T\left(e_{1}\right), T\left(e_{2}\right), \ldots, T\left(e_{n}\right)\right\}\right)=\mathbb{R}^{m}$. Thus, since

$$
\operatorname{span}\left(\left\{T\left(e_{1}\right), T\left(e_{2}\right), \ldots, T\left(e_{n}\right)\right\}\right)=\mathcal{I}_{T}
$$

$\operatorname{dim}\left(\mathcal{I}_{T}\right)=m$.
5. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be given by

$$
T(v)=A v, \quad \text { for all } v \in \mathbb{R}^{3},
$$

where A is the 3×3 matrix given by

$$
A=\left(\begin{array}{rrr}
0 & 1 & 1 \\
-1 & 0 & 1 \\
-1 & -1 & 0
\end{array}\right)
$$

Determine whether or not T is
(a) one-to-one;
(b) onto;
(c) invertible.

Solution: First, we compute the null space of T by solving the equation

$$
\left(\begin{array}{rrr}
0 & 1 & 1 \\
-1 & 0 & 1 \\
-1 & -1 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

this is equivalent to solving the homogeneous system of equations

$$
\left\{\begin{align*}
x_{2}+x_{3} & =0 \tag{11}\\
-x_{1}+x_{3} & =0 \\
-x_{1}-x_{2} & =0
\end{align*}\right.
$$

The system in (11) can be solved by reducing the augmented matrix

$$
\left(\begin{array}{rrr|r}
0 & 1 & 1 & 0 \\
-1 & 0 & 1 & 0 \\
-1 & -1 & 0 & 0
\end{array}\right)
$$

to

$$
\left(\begin{array}{lll:l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

which shows that the system in (11) has only the trivial solution. Hence,

$$
\mathcal{N}_{T}=\{\mathbf{0}\}
$$

and therefore
(a) T is one-to-one.
(b) Next, use the Dimension Theorem in (1) to get that $\operatorname{dim}\left(\mathcal{I}_{T}\right)=3$, which shows that $\mathcal{I}_{T}=\mathbb{R}^{3}$, and therefore T is onto.
(c) Finally, since T is one-to-one and onto, we get that T is invertible.

