Assignment #21

Due on Monday, November 24, 2014

Read Section 4.3 on *Matrix Representation of Linear Functions* in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 4.4, on *Compositions*, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 2.7 on *Change of Basis* in Damiano and Little (pp. 122–127)

Background and Definitions

• Similar Matrices. Let A and B denote $n \times n$ matrices. We say that A and B are similar if and only if there exits and invertible $n \times n$ matrix Q such that

$$B = Q^{-1}AQ.$$

Do the following problems

1. Let $R_{\theta} \colon \mathbb{R}^2 \to \mathbb{R}^2$ denote rotation around the origin in the counterclockwise through an angle θ . Let $\mathcal{B} = \{v_1, v_2\}$, where

$$v_1 = \begin{pmatrix} 2\\ 1 \end{pmatrix}$$
 and $v_2 = \begin{pmatrix} 1\\ -2 \end{pmatrix}$.

Give the matrix representation for R_{θ} relative to B; that is, compute $[R_{\theta}]_{\beta}^{\mathcal{B}}$.

- 2. Let R_{θ} be as in Problem 1 and let \mathcal{E} denote the standard basis in \mathbb{R}^2 . Compute the matrix representations $[R_{\theta}]_{\mathcal{E}}^{\mathcal{B}}$ and $[R_{\theta}]_{\mathcal{B}}^{\mathcal{E}}$.
- 3. The set

$$\mathcal{B} = \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0 \end{pmatrix} \right\}$$

is a basis for \mathbb{R}^3 . Let T denote a linear transformation satisfying

$$T\begin{pmatrix}1\\1\\1\end{pmatrix} = \begin{pmatrix}2\\2\\2\end{pmatrix}, \quad T\begin{pmatrix}1\\1\\0\end{pmatrix} = \begin{pmatrix}3\\3\\0\end{pmatrix}, \quad \text{and} \quad T\begin{pmatrix}1\\0\\0\end{pmatrix} = \begin{pmatrix}-1\\0\\0\end{pmatrix}$$

Compute M_T , the matrix representation of T relative to the standard basis in \mathbb{R}^3 .

Math 60. Rumbos

4. Let A and B denote $n \times n$ matrices. Assume that A and B are similar. Prove that there exists a linear transformation $T \colon \mathbb{R}^n \to \mathbb{R}^n$ and bases \mathcal{B} and \mathcal{B}' of \mathbb{R}^n such that

$$A = [T]^{\mathcal{B}}_{\mathcal{B}} \quad \text{and} \quad B = [T]^{\mathcal{B}'}_{\mathcal{B}'}.$$

5. The set $\mathcal{B} = \{v_1, v_2\}$, where

$$v_1 = \begin{pmatrix} 2\\ 1 \end{pmatrix}$$
 and $v_2 = \begin{pmatrix} 1\\ 2 \end{pmatrix}$,

is a basis for \mathbb{R}^2 . Let $I: \mathbb{R}^2 \to \mathbb{R}^2$ denote the identity map. Compute the matrix representations $[I]^{\mathcal{B}}_{\mathcal{E}}$ and $[I]^{\mathcal{E}}_{\mathcal{B}}$, where \mathcal{E} denotes the standard basis in \mathbb{R}^2 .

Fall 2014 2