Assignment \#21

Due on Monday, November 24, 2014
Read Section 4.3 on Matrix Representation of Linear Functions in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 4.4, on Compositions, in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 2.7 on Change of Basis in Damiano and Little (pp. 122-127)

Background and Definitions

- Similar Matrices. Let A and B denote $n \times n$ matrices. We say that A and B are similar if and only if there exits and invertible $n \times n$ matrix Q such that

$$
B=Q^{-1} A Q
$$

Do the following problems

1. Let $R_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote rotation around the origin in the counterclockwise through an angle θ. Let $\mathcal{B}=\left\{v_{1}, v_{2}\right\}$, where

$$
v_{1}=\binom{2}{1} \quad \text { and } \quad v_{2}=\binom{1}{-2}
$$

Give the matrix representation for R_{θ} relative to B; that is, compute $\left[R_{\theta}\right]_{\mathcal{B}}^{\mathcal{B}}$.
2. Let R_{θ} be as in Problem 1 and let \mathcal{E} denote the standard basis in \mathbb{R}^{2}. Compute the matrix representations $\left[R_{\theta}\right]_{\mathcal{E}}^{\mathcal{B}}$ and $\left[R_{\theta}\right]_{\mathcal{B}}^{\mathcal{E}}$.
3. The set

$$
\mathcal{B}=\left\{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right\}
$$

is a basis for \mathbb{R}^{3}. Let T denote a linear transformation satisfying

$$
T\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
2 \\
2 \\
2
\end{array}\right), \quad T\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
3 \\
3 \\
0
\end{array}\right), \quad \text { and } \quad T\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{r}
-1 \\
0 \\
0
\end{array}\right)
$$

Compute M_{T}, the matrix representation of T relative to the standard basis in \mathbb{R}^{3}.
4. Let A and B denote $n \times n$ matrices. Assume that A and B are similar. Prove that there exists a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and bases \mathcal{B} and \mathcal{B}^{\prime} of \mathbb{R}^{n} such that

$$
A=[T]_{\mathcal{B}}^{\mathcal{B}} \quad \text { and } \quad B=[T]_{\mathcal{B}^{\prime}}^{\mathcal{B}^{\prime}}
$$

5. The set $\mathcal{B}=\left\{v_{1}, v_{2}\right\}$, where

$$
v_{1}=\binom{2}{1} \quad \text { and } \quad v_{2}=\binom{1}{2}
$$

is a basis for \mathbb{R}^{2}. Let $I: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote the identity map. Compute the matrix representations $[I]_{\mathcal{E}}^{\mathcal{B}}$ and $[I]_{\mathcal{B}}^{\mathcal{E}}$, where \mathcal{E} denotes the standard basis in \mathbb{R}^{2}.

