Solutions to Assignment \#21

1. Let $R_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote rotation around the origin in the counterclockwise through an angle θ. Let $\mathcal{B}=\left\{v_{1}, v_{2}\right\}$, where

$$
v_{1}=\binom{2}{1} \quad \text { and } \quad v_{2}=\binom{1}{-2}
$$

Give the matrix representation for R_{θ} relative to \mathcal{B}; that is, compute $\left[R_{\theta}\right]_{\mathcal{B}}^{\mathcal{B}}$.
Solution: First, note that $R_{\theta}(v)=M_{T} v$ for all $v \in \mathbb{R}^{2}$, where

$$
M_{\theta}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

The matrix representation of R_{θ} relative to \mathcal{B} is given by

$$
\left[R_{\theta}\right]_{\mathcal{B}}^{\mathcal{B}}=\left[\begin{array}{ll}
{\left[R_{\theta}\left(v_{1}\right)\right]_{\mathcal{B}}} & {\left[R_{\theta}\left(v_{2}\right)\right]_{\mathcal{B}}} \tag{1}
\end{array}\right]
$$

Thus, we compute $R_{\theta}\left(v_{1}\right)$ and $R_{\theta}\left(v_{2}\right)$ and their coordinates relative to $\mathcal{B},\left[R_{\theta}\left(v_{1}\right)\right]_{\mathcal{B}}$ and $\left[R_{\theta}\left(v_{2}\right)\right]_{\mathcal{B}}$, respectively.
Compute

$$
R_{\theta}\left(v_{1}\right)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{2}{1}=\binom{2 \cos \theta-\sin \theta}{2 \sin \theta+\cos \theta}
$$

Next, find c_{1} and c_{2} such that

$$
c_{1} v_{1}+c_{2} v_{2}=R_{\theta}\left(v_{1}\right)
$$

or

$$
\left(\begin{array}{rr}
2 & 1 \tag{2}\\
1 & -2
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{2 \cos \theta-\sin \theta}{2 \sin \theta+\cos \theta}
$$

We can solve the equation in (2) by multiplying on both sides by

$$
\left(\begin{array}{rr}
2 & 1 \tag{3}\\
1 & -2
\end{array}\right)^{-1}=\frac{1}{-5}\left(\begin{array}{rr}
-2 & -1 \\
-1 & 2
\end{array}\right)=\frac{1}{5}\left(\begin{array}{rr}
2 & 1 \\
1 & -2
\end{array}\right)
$$

Thus,

$$
\binom{c_{1}}{c_{2}}=\frac{1}{5}\left(\begin{array}{rr}
2 & 1 \\
1 & -2
\end{array}\right)\binom{2 \cos \theta-\sin \theta}{2 \sin \theta+\cos \theta}
$$

or

$$
\binom{c_{1}}{c_{2}}=\binom{\cos \theta}{-\sin \theta} .
$$

We therefore get that

$$
\begin{equation*}
\left[R_{\theta}\left(v_{1}\right)\right]_{\mathcal{B}}=\binom{\cos \theta}{-\sin \theta} \tag{4}
\end{equation*}
$$

Similarly, to find $\left[R_{\theta}\left(v_{2}\right)\right]_{\mathcal{B}}$, first compute

$$
R_{\theta}\left(v_{2}\right)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{1}{-2}=\binom{\cos \theta+2 \sin \theta}{\sin \theta-2 \cos \theta},
$$

and then compute

$$
\left[R_{\theta}\left(v_{2}\right)\right]_{\mathcal{B}}=\frac{1}{5}\left(\begin{array}{rr}
2 & 1 \tag{5}\\
1 & -2
\end{array}\right)\binom{\cos \theta+2 \sin \theta}{\sin \theta-2 \cos \theta}=\binom{\sin \theta}{\cos \theta}
$$

Finally, combining (1), (4) and (5) yields

$$
\left[R_{\theta}\right]_{\mathcal{B}}^{\mathcal{B}}=\left(\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) .
$$

2. Let R_{θ} be as in Problem 1 and let \mathcal{E} denote the standard basis in \mathbb{R}^{2}. Compute the matrix representations $\left[R_{\theta}\right]_{\mathcal{E}}^{\mathcal{B}}$ and $\left[R_{\theta}\right]_{\mathcal{B}}^{\mathcal{E}}$.
Solution: First, we compute

$$
\left[R_{\theta}\right]_{\mathcal{E}}^{\mathcal{B}}=\left[\left[\begin{array}{ll}
\left.R_{\theta}\left(e_{1}\right)\right]_{\mathcal{B}} & \left.\left[R_{\theta}\left(e_{2}\right)\right]_{\mathcal{B}}\right] \tag{6}
\end{array}\right]\right.
$$

where

$$
R_{\theta}\left(e_{1}\right)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{1}{0}=\binom{\cos \theta}{\sin \theta}
$$

and

$$
R_{\theta}\left(e_{2}\right)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{0}{1}=\binom{-\sin \theta}{\cos \theta} .
$$

As in Problem 1, we compute the coordinates of $R_{\theta}\left(e_{1}\right)$ and $R_{\theta}\left(e_{2}\right)$ by multiplying by the inverse of $\left(\begin{array}{rr}2 & 1 \\ 1 & -2\end{array}\right)$ in (3). We get

$$
\left[R_{\theta}\left(e_{1}\right)\right]_{\mathcal{B}}=\frac{1}{5}\left(\begin{array}{rr}
2 & 1 \tag{7}\\
1 & -2
\end{array}\right)\binom{\cos \theta}{\sin \theta}=\binom{(2 \cos \theta+\sin \theta) / 5}{(\cos \theta-2 \sin \theta) / 5}
$$

and

$$
\left[R_{\theta}\left(e_{2}\right)\right]_{\mathcal{B}}=\frac{1}{5}\left(\begin{array}{rr}
2 & 1 \tag{8}\\
1 & -2
\end{array}\right)\binom{-\sin \theta}{\cos \theta}=\binom{(\cos \theta-2 \sin \theta) / 5}{(-\sin \theta-2 \cos \theta) / 5}
$$

Combining (6), (7) and (8) then yields

$$
\left[R_{\theta}\right]_{\mathcal{E}}^{\mathcal{B}}=\left(\begin{array}{cc}
(2 \cos \theta+\sin \theta) / 5 & (\cos \theta-2 \sin \theta) / 5 \\
(\cos \theta-2 \sin \theta) / 5 & (-\sin \theta-2 \cos \theta) / 5
\end{array}\right)
$$

Next, we compute

$$
\left[R_{\theta}\right]_{\mathcal{B}}^{\mathcal{E}}=\left[\left[\begin{array}{ll}
\left.R_{\theta}\left(v_{1}\right)\right]_{\mathcal{E}} & {\left[R_{\theta}\left(v_{2}\right)\right]_{\mathcal{E}}}
\end{array}\right]\right.
$$

where

$$
R_{\theta}\left(v_{1}\right)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{2}{1}=\binom{2 \cos \theta-\sin \theta}{2 \sin \theta+\cos \theta}
$$

and

$$
R_{\theta}\left(v_{2}\right)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{1}{-2}=\binom{\cos \theta+2 \sin \theta}{\sin \theta-2 \cos \theta} .
$$

Consequently,

$$
\left[R_{\theta}\right]_{\mathcal{B}}^{\mathcal{E}}=\left(\begin{array}{ll}
2 \cos \theta-\sin \theta & \cos \theta+2 \sin \theta \\
2 \sin \theta+\cos \theta & \sin \theta-2 \cos \theta
\end{array}\right)
$$

3. The set

$$
\mathcal{B}=\left\{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right\}
$$

is a basis for \mathbb{R}^{3}. Let T denote a linear transformation satisfying

$$
T\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
2 \\
2 \\
2
\end{array}\right), \quad T\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
3 \\
3 \\
0
\end{array}\right), \quad \text { and } \quad T\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{r}
-1 \\
0 \\
0
\end{array}\right)
$$

Compute M_{T}, the matrix representation of T relative to the standard basis in \mathbb{R}^{3}.
Solution: Call the vectors in $\mathcal{B} v_{1}, v_{2}$ and v_{3}, respectively, so that

$$
T\left(v_{1}\right)=\left(\begin{array}{l}
2 \tag{9}\\
2 \\
2
\end{array}\right), \quad T\left(v_{2}\right)=\left(\begin{array}{l}
3 \\
3 \\
0
\end{array}\right), \quad \text { and } \quad T\left(v_{3}\right)=\left(\begin{array}{r}
-1 \\
0 \\
0
\end{array}\right) .
$$

Next, compute the coordinates of e_{1}, e_{2} and e_{3} relative to \mathcal{B}.
For e_{1} we solve

$$
c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=e_{1}
$$

or

$$
\left(\begin{array}{lll}
1 & 1 & 1 \tag{10}\\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) .
$$

The system in (10) can be solved by multiplying on both sides on the left by

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)^{-1}
$$

where the inverse of $\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$ can be obtained by performing Gaussian elimination to the augmented matrix

$$
\left(\begin{array}{lll|lll}
1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

This leads to

$$
\left(\begin{array}{lll}
1 & 1 & 1 \tag{11}\\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)^{-1}=\left(\begin{array}{rrr}
0 & 0 & 1 \\
0 & 1 & -1 \\
1 & -1 & 0
\end{array}\right)
$$

Thus, the solution of the system in (10) is

$$
\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{rrr}
0 & 0 & 1 \\
0 & 1 & -1 \\
1 & -1 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) .
$$

Consequently,

$$
\begin{equation*}
e_{1}=v_{3} . \tag{12}
\end{equation*}
$$

Similar calculations show that

$$
\begin{equation*}
e_{2}=v_{2}-v_{3} . \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
e_{3}=v_{1}-v_{2} . \tag{14}
\end{equation*}
$$

Applying the linear transformation T to the expressions in (12), (13) and (14), and using (9) then yields

$$
T\left(e_{1}\right)=T\left(v_{3}\right)=\left(\begin{array}{r}
-1 \\
0 \\
0
\end{array}\right)
$$

$$
T\left(e_{2}\right)=T\left(v_{2}\right)-T\left(v_{3}\right)=\left(\begin{array}{l}
3 \\
3 \\
0
\end{array}\right)-\left(\begin{array}{r}
-1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
4 \\
3 \\
0
\end{array}\right)
$$

and

$$
T\left(e_{3}\right)=T\left(v_{1}\right)-T\left(v_{2}\right)=\left(\begin{array}{l}
2 \\
2 \\
2
\end{array}\right)-\left(\begin{array}{l}
3 \\
3 \\
0
\end{array}\right)=\left(\begin{array}{r}
-1 \\
-1 \\
2
\end{array}\right) .
$$

We then have that

$$
M_{T}=\left(\begin{array}{rrr}
-1 & 4 & -1 \\
0 & 3 & -1 \\
0 & 0 & 2
\end{array}\right)
$$

4. Let A and B denote $n \times n$ matrices. Assume that A and B are similar. Prove that there exists a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and bases \mathcal{B} and \mathcal{B}^{\prime} of \mathbb{R}^{n} such that

$$
A=[T]_{\mathcal{B}}^{\mathcal{B}} \quad \text { and } \quad B=[T]_{\mathcal{B}^{\prime}}^{\mathcal{B}^{\prime}}
$$

Solution: Assume that B is similar to A; then, there exists an invertible $n \times n$ matrix Q such that

$$
B=Q^{-1} A Q
$$

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the linear transformation given by

$$
T(v)=A v, \quad \text { for all } v \in \mathbb{R}^{n} .
$$

Then,

$$
A=M_{T}=[T]_{\mathcal{E}}^{\mathcal{E}}
$$

where \mathcal{E} denotes the standard basis in \mathbb{R}^{n}.
Next, write Q in terms of its columns

$$
Q=\left[\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{n}
\end{array}\right]
$$

so that the set $\mathcal{B}^{\prime}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for \mathbb{R}^{n}, since Q is invertible. We then have that

$$
Q=[I]_{\mathcal{B}^{\prime}}^{\mathcal{E}}
$$

where $I: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is the identity map, is the change of bases matrix from \mathcal{B}^{\prime} to \mathcal{E}. We also have that

$$
Q^{-1}=[I]_{\mathcal{E}}^{\mathcal{B}^{\prime}}
$$

is the change of bases matrix from \mathcal{E} to \mathcal{B}. Consequently,

$$
B=Q^{-1} A Q=[I]_{\mathcal{E}}^{\mathcal{E}^{\prime}}[T]_{\mathcal{E}}^{\mathcal{E}}[I]_{\mathcal{B}^{\prime}}^{\mathcal{E}}=[T]_{\mathcal{B}^{\prime}}^{\mathcal{B}^{\prime}}
$$

which was to be shown for the case $\mathcal{B}=\mathcal{E}$.
5. The set $\mathcal{B}=\left\{v_{1}, v_{2}\right\}$, where

$$
v_{1}=\binom{2}{1} \quad \text { and } \quad v_{2}=\binom{1}{2}
$$

is a basis for \mathbb{R}^{2}. Let $I: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote the identity map. Compute the matrix representations $[I]_{\mathcal{E}}^{\mathcal{B}}$ and $[I]_{\mathcal{B}}^{\mathcal{E}}$, where \mathcal{E} denotes the standard basis in \mathbb{R}^{2}.
Solution: We first compute

$$
\begin{aligned}
{[I]_{\mathcal{B}}^{\mathcal{E}} } & =\left[\begin{array}{ll}
{\left[\left(v_{1}\right)\right]_{\mathcal{E}}} & \left.I\left(v_{2}\right)\right]_{\mathcal{E}}
\end{array}\right] \\
& =\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right] \\
& =\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right) .
\end{aligned}
$$

To compute $[I]_{\mathcal{E}}^{\mathcal{B}}$, compute the inverse of $[I]_{\mathcal{B}}^{\mathcal{A}}$; thus,

$$
\begin{aligned}
{[I]_{\mathcal{E}}^{\mathcal{B}} } & =\left([I]_{\mathcal{B}}^{\mathcal{E}}\right)^{-1} \\
& =\left(\begin{array}{lr}
2 & 1 \\
1 & 2
\end{array}\right)^{-1} \\
& =\frac{1}{3}\left(\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right) \\
& =\left(\begin{array}{rr}
2 / 3 & -1 / 3 \\
-1 / 3 & 2 / 3
\end{array}\right) .
\end{aligned}
$$

