Assignment \#22

Due on Wednesday, November 26, 2014
Read Chapter 5, on The Eigenvalue Problem, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 4.1 on Eigenvalues and Eigenvectors in Damiano and Little (pp. 162173)

Read Section 4.2 on Diagonalizability in Damiano and Little (pp. 175-181)

Background and Definitions

Eigenvalues and Eigenvectors. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation. A scalar, λ, is said to be an eigenvalue of T if and only if the equation

$$
\begin{equation*}
T(v)=\lambda v \tag{1}
\end{equation*}
$$

has a nontrivial solution.
A nontrivial solution, v, of the equation $T(v)=\lambda v$ is called an eigenvector corresponding to the eigenvalue λ.

Observe that the equation in (1) can also be written as

$$
(T-\lambda I) v=\mathbf{0}
$$

where $I: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ denotes the identity transformation in \mathbb{R}^{n}. Thus, λ is an eigenvalue of T if and only if the null space of the linear transformation $T-\lambda I$ is nontrivial; that is $\mathcal{N}_{T-\lambda I} \neq\{\mathbf{0}\}$. The null space of $T-\lambda I$ is called the eigenspace of T corresponding to λ and is denoted by $E_{T}(\lambda)$.

Do the following problems

1. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote a linear transformation in \mathbb{R}^{2}. Suppose that v_{1} and v_{2} are two eigenvectors of T corresponding to the eigenvalues λ_{1} and λ_{2}, respectively.
Prove that, if $\lambda_{1} \neq \lambda_{2}$, then the set $\left\{v_{1}, v_{2}\right\}$ is linearly independent.
Deduce therefore that a linear transformation, T, from \mathbb{R}^{2} to \mathbb{R}^{2} cannot have more than two distinct eigenvalues.
2. Show that the rotation $R_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ does not have any real eigenvalues unless $\theta=0$ or $\theta=\pi$.
Give the eigenvalues and corresponding eigenspaces in each case.
3. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by

$$
T\binom{x}{y}=A\binom{x}{y}, \quad \text { for all } \quad\binom{x}{y} \in \mathbb{R}^{2}
$$

where A is the 2×2 matrix

$$
A=\left(\begin{array}{rr}
5 & 3 \\
-6 & -4
\end{array}\right) .
$$

Find all the eigenvalue of T and compute their respective eigenspaces.
4. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by

$$
T\binom{x}{y}=A\binom{x}{y}, \quad \text { for all } \quad\binom{x}{y} \in \mathbb{R}^{2}
$$

where A is the 2×2 matrix

$$
A=\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right)
$$

where a and b are real constants.
(a) Show that T has real eigenvalues.
(b) Under what conditions on a and b will the eigenvalues obtained in part (a) be distinct eigenvalues?
5. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation. Prove that $\lambda=0$ is an eigenvalue of T if and only if the matrix representation, M_{T}, of T is not one-to-one.

