Solutions to Assignment \#22

1. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote a linear transformation in \mathbb{R}^{2}. Suppose that v_{1} and v_{2} are two eigenvectors of T corresponding to the eigenvalues λ_{1} and λ_{2}, respectively.

Prove that, if $\lambda_{1} \neq \lambda_{2}$, then the set $\left\{v_{1}, v_{2}\right\}$ is linearly independent.
Deduce therefore that a linear transformation, T, from \mathbb{R}^{2} to \mathbb{R}^{2} cannot have more than two distinct eigenvalues.

Proof: Let λ_{1} and λ_{2} be distinct eigenvalues of $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with corresponding eigenvectors v_{1} and v_{2}, respectively.
Suppose that c_{1} and c_{2} solve the vector equation

$$
\begin{equation*}
c_{1} v_{1}+c_{2} v_{2}=\mathbf{0} \tag{1}
\end{equation*}
$$

Applying T on both sides of the equation in (1) and using the linearity of T, we obtain that

$$
c_{1} T\left(v_{1}\right)+c_{2} T\left(v_{2}\right)=\mathbf{0}
$$

or

$$
\begin{equation*}
c_{1} \lambda_{1} v_{1}+c_{2} \lambda_{2} v_{2}=\mathbf{0} \tag{2}
\end{equation*}
$$

since v_{1} and v_{2} are eigenvectors corresponding to λ_{1} and λ_{2}, respectively.
Since, we are assuming that λ_{1} and λ_{2} are distinct, one of them cannot be 0 . Thus, suppose that $\lambda_{2} \neq 0$ and multiply the vector equation in (1) by λ_{2} to get

$$
\begin{equation*}
c_{1} \lambda_{2} v_{1}+c_{2} \lambda_{2} v_{2}=\mathbf{0} \tag{3}
\end{equation*}
$$

Subtracting the vector equation in (1) from the vector equation in (3) we then get that

$$
c_{1}\left(\lambda_{2}-\lambda_{1}\right) v_{1}=\mathbf{0}
$$

which implies that

$$
c_{1} v_{1}=\mathbf{0}
$$

because $\lambda_{1} \neq \lambda_{2}$. It then follows that $c_{1}=0$ since v_{1} is not the zero vector in \mathbb{R}^{2}. We then get from (1) that

$$
c_{2} v_{2}=\mathbf{0}
$$

which implies that $c_{2}=0$ since v_{2} is not the zero vector in \mathbb{R}^{2}.

We have therefore shown that $c_{1}=c_{2}=0$ is the only solution of the vector equation in (1). Consequently, $\left\{v_{1}, v_{2}\right\}$ is linearly independent.
Thus, a linear transformation, T, from \mathbb{R}^{2} to \mathbb{R}^{2} cannot have more than two distinct eigenvalues. For if it did, then a similar argument to the one given above would imply that there there is a set of more than two linearly independent vectors, which is impossible in \mathbb{R}^{2} because $\operatorname{dim}\left(\mathbb{R}^{2}\right)=2$.
2. Show that the rotation $R_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ does not have any real eigenvalues unless $\theta=0$ or $\theta=\pi$.

Give the eigenvalues and corresponding eigenspaces in each case.
Solution: Consider the matrix for the transformation $R_{\theta}-\lambda I$, where I denotes the 2×2 identity matrix,

$$
M_{R_{\theta}-\lambda I}=\left(\begin{array}{cc}
\cos \theta-\lambda & -\sin \theta \\
\sin \theta & \cos \theta-\lambda
\end{array}\right) .
$$

The homogeneous system $\left(R_{\theta}-\lambda I\right) v=\mathbf{0}$ has nontrivial solutions if and only if the columns of $M_{R_{\theta}-\lambda I}$ are linearly dependent, and this is the case if and only if $\operatorname{det}\left(M_{R_{\theta}-\lambda I}\right)=0$, or

$$
(\cos \theta-\lambda)^{2}+\sin ^{2} \theta=0
$$

which implies that

$$
\begin{equation*}
\lambda^{2}-2 \cos \theta \lambda+1=0 \tag{4}
\end{equation*}
$$

The quadratic equation in (4) has real solutions if and only if

$$
4 \cos ^{2} \theta-4 \geqslant 0
$$

or

$$
\cos ^{2} \theta \geqslant 1
$$

But, $\cos ^{2} \theta \leqslant 1$. We therefore get that

$$
\cos ^{2} \theta=1
$$

Thus, either $\cos \theta=1$, which yields $\theta=0$ or 2π, or $\cos \theta=-1$, which yields $\theta=\pi$ or $-\pi$.
If $\theta=0$, then the matrix for R_{θ} is

$$
M_{R_{0}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

the identity matrix. Thus, $\lambda=1$ is the only eigenvalue of the R_{0} and every nonzero vector, v, in \mathbb{R}^{2} is an eigenvector since $R_{0} v=v$. Hence $E_{R_{0}}(1)=\mathbb{R}^{2}$. If $\theta=\pi$, the matrix for R_{θ} is

$$
M_{R_{\pi}}=\left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right)
$$

so that $\lambda=-1$ is the only eigenvalue of the R_{π} and every nonzero vector, v, in \mathbb{R}^{2} is an eigenvector since $R_{\pi} v=-v$. Hence $E_{R_{0}}(-1)=\mathbb{R}^{2}$.
3. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by

$$
T\binom{x}{y}=A\binom{x}{y}, \quad \text { for all } \quad\binom{x}{y} \in \mathbb{R}^{2}
$$

where A is the 2×2 matrix

$$
A=\left(\begin{array}{rr}
5 & 3 \\
-6 & -4
\end{array}\right)
$$

Find all the eigenvalue of T and compute their respective eigenspaces.
Solution: We look for values of λ for which the equation

$$
T(v)=\lambda v
$$

has nontrivial solutions. This is equivalent to finding values of λ for which the homogeneous system

$$
\begin{equation*}
(A-\lambda I) v=\mathbf{0} \tag{5}
\end{equation*}
$$

has nontrivial solutions. The system in (5) has nontrivial solutions when the columns of the matrix

$$
A-\lambda I=\left(\begin{array}{cc}
5-\lambda & 3 \\
-6 & -4-\lambda
\end{array}\right)
$$

are linearly dependent. This happens when $\operatorname{det}\left(A_{\lambda} I\right)=0$, or

$$
\begin{equation*}
(\lambda-5)(\lambda+4)+18=0 \tag{6}
\end{equation*}
$$

Solving the equation (6) for λ yields the values $\lambda_{1}=-1$ and $\lambda_{2}=2$. These are the eigenvalues of T.
To find $E_{T}(-1)$ we solve the homogeneous system

$$
(A+I) v=\mathbf{0}
$$

or

$$
\left(\begin{array}{rr}
6 & 3 \tag{7}\\
-6 & -3
\end{array}\right)\binom{x}{y}=\binom{0}{0}
$$

Using Gaussian elimination we see that the system in (7) is equivalent to the equation

$$
x+\frac{1}{2} y=0
$$

which has solution space given by

$$
\binom{x}{y}=t\binom{1}{-2} .
$$

It then follows that

$$
E_{T}(-1)=\operatorname{span}\left\{\binom{1}{-2}\right\} .
$$

Similar calculations show that

$$
E_{T}(2)=\operatorname{span}\left\{\binom{1}{-1}\right\} .
$$

4. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by

$$
T\binom{x}{y}=A\binom{x}{y}, \quad \text { for all } \quad\binom{x}{y} \in \mathbb{R}^{2}
$$

where A is the 2×2 matrix

$$
A=\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right)
$$

where a and b are real constants.
(a) Show that T has real eigenvalues.

Solution: We look for values of λ for which the system

$$
\begin{equation*}
(A-\lambda I) v=\mathbf{0} \tag{8}
\end{equation*}
$$

has nontrivial solutions. This happens when the columns of the matrix

$$
A-\lambda I=\left(\begin{array}{cc}
a-\lambda & b \\
b & a-\lambda
\end{array}\right)
$$

are linearly dependent. Thus, we require that $\operatorname{det}(A-\lambda I)=0$, or

$$
\begin{equation*}
(\lambda-a)^{2}-b^{2}=0 \tag{9}
\end{equation*}
$$

We can factor the equation in (9) to get

$$
(\lambda-a+b)(\lambda-a-b)=0
$$

which yields the values $\lambda_{1}=a-b$ and $\lambda_{2}=a+b$, both of which are real.
(b) Under what conditions on a and b will the eigenvalues obtained in part (a) be distinct eigenvalues?
Solution: $\lambda_{1}=\lambda_{2}$ if and only if and only if $a-b=a+b$, which occurs if and only if $b=0$.
5. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation. Prove that $\lambda=0$ is an eigenvalue of T if and only if T is not one-to-one.
Solution: $\lambda=0$ is an eigenvalue of T if and only if the equation

$$
T(v)=0 v
$$

or

$$
T(v)=\mathbf{0}
$$

has a nontrivial solution. Thus, $\lambda=0$ is an eigenvalue of T if and only if T is not one-to-one.

