Solutions to Assignment \#2

1. Consider the vectors v_{1}, v_{2} and v_{3} in \mathbb{R}^{3} given by

$$
v_{1}=\left(\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right), \quad v_{2}=\left(\begin{array}{r}
2 \\
-3 \\
1
\end{array}\right), \quad \text { and } \quad v_{3}=\left(\begin{array}{r}
0 \\
7 \\
-3
\end{array}\right)
$$

Show that $v_{3} \in \operatorname{span}\left\{v_{1}, v_{2}\right\}$.
Solution: We need to find scalars c_{1} and c_{2} such that

$$
c_{1} v_{1}+c_{2} v_{2}=v_{3}
$$

or

$$
c_{1}\left(\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right)+c_{2}\left(\begin{array}{r}
2 \\
-3 \\
1
\end{array}\right)=\left(\begin{array}{r}
0 \\
7 \\
-3
\end{array}\right)
$$

or

$$
\left(\begin{array}{c}
c_{1}+2 c_{2} \\
2 c_{1}-3 c_{2} \\
-c_{1}+c_{2}
\end{array}\right)=\left(\begin{array}{r}
0 \\
7 \\
-3
\end{array}\right) .
$$

This leads to the system of equations

$$
\left\{\begin{array}{l}
c_{1}+2 c_{2}=0 \\
2 c_{1}-3 c_{2}=7 \\
-c_{1}+c_{2}=-3
\end{array}\right.
$$

Solving for c_{1} in the first equation and substituting into the second equation yields

$$
-7 c_{2}=7
$$

from which we get that

$$
c_{2}=-1 .
$$

We then get that $c_{1}=2$ from the first equation. Note that $c_{1}=2$ and $c_{2}=-1$ are consistent with the third equation. It then follows that

$$
v_{3}=2 v_{1}-v_{2}
$$

and therefore $v_{3} \in \operatorname{span}\left\{v_{1}, v_{2}\right\}$.
2. Let v_{1}, v_{2} and v_{3} be as in Problem 1 above. Use the result of Problem 1 to show that

$$
\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}=\operatorname{span}\left\{v_{1}, v_{2}\right\}
$$

Note: You need to show that one span is a subset of the other, and conversely, the other is a subset of the one.

Solution: To see that $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\} \subseteq \operatorname{span}\left\{v_{1}, v_{2}\right\}$, let v be in $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}$. Then,

$$
v=c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}
$$

for some scalars c_{1}, c_{2} and c_{3}. By the result of Problem 1, $v_{3}=2 v_{1}-v_{2}$, so that

$$
\begin{aligned}
v & =c_{1} v_{1}+c_{2} v_{2}+c_{3}\left(2 v_{1}-v_{2}\right) \\
& =c_{1} v_{1}+c_{2} v_{2}+2 c_{3} v_{1}-c_{3} v_{2} \\
& =\left(c_{1}+2 c_{3}\right) v_{1}+\left(c_{2}-c_{3}\right) v_{2},
\end{aligned}
$$

which displays v as a linear combination of v_{1} and v_{2}; that is, v is in $\operatorname{span}\left\{v_{1}, v_{2}\right\}$. Thus, we have shown that

$$
v \in \operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\} \Rightarrow v \in \operatorname{span}\left\{v_{1}, v_{2}\right\}
$$

that is, $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\} \subseteq \operatorname{span}\left\{v_{1}, v_{2}\right\}$.
Next, we show the reverse inclusion: $\operatorname{span}\left\{v_{1}, v_{2}\right\} \subseteq \operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}$.
Let $v \in \operatorname{span}\left\{v_{1}, v_{2}\right\}$. Then,

$$
v=c_{1} v_{1}+c_{2} v_{2}
$$

for some scalars c_{1} and c_{2}, so that

$$
v=c_{1} v_{1}+c_{2} v_{2}+0 \cdot v_{3}
$$

that is, v is also a linear combination of v_{1}, v_{2} and v_{3}. Consequently,

$$
v \in \operatorname{span}\left\{v_{1}, v_{2}\right\} \Rightarrow v \in \operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\},
$$

or $\operatorname{span}\left\{v_{1}, v_{2}\right\} \subseteq \operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}$.
We therefore conclude that $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}=\operatorname{span}\left\{v_{1}, v_{2}\right\}$.
3. Let v_{1} and v_{2} be as in Problem 1 above. Show that $\operatorname{span}\left\{v_{1}, v_{2}\right\}$ is a plane through the origin in \mathbb{R}^{3} and give the equation of the plane.

Solution: Consider an arbitrary element, $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$, in $\operatorname{span}\left\{v_{1}, v_{2}\right\}$. Then

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=c_{1} v_{1}+c_{2} v_{2}
$$

for scalars c_{1} and c_{2}. That is,

$$
c_{1}\left(\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right)+c_{2}\left(\begin{array}{r}
2 \\
-3 \\
1
\end{array}\right)=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

or

$$
\left(\begin{array}{c}
c_{1}+2 c_{2} \\
2 c_{1}-3 c_{2} \\
-c_{1}+c_{2}
\end{array}\right)=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) .
$$

We then get the system of equations

$$
\left\{\begin{array}{l}
c_{1}+2 c_{2}=x \\
2 c_{1}-3 c_{2}=y \\
-c_{1}+c_{2}=z
\end{array}\right.
$$

Solving for c_{1} in the first equation and substituting into the second and third equations leads to the system of two equations

$$
\left\{\begin{array}{l}
7 c_{2}=2 x-y \\
3 c_{2}=x+z
\end{array}\right.
$$

We then get that

$$
\frac{2 x-y}{7}=\frac{x+z}{3}
$$

from which we get the equation

$$
x+3 y+7 z=0
$$

which is the equation of a plane in \mathbb{R}^{3} containing the vectors v_{1} and v_{2}. Denoting the plane by Q, we see that we have just shown that

$$
\operatorname{span}\left\{v_{1}, v_{2}\right\} \subseteq Q
$$

To show that Q is a subset of $\operatorname{span}\left\{v_{1}, v_{2}\right\}$, we need to show that any vector $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ whose coordinates satisfy

$$
x+3 y+7 z=0
$$

must be a linear combination of v_{1} and v_{2}. To see why this is so, solve for x in terms of y and z to get

$$
x=-3 y-7 z .
$$

Setting $y=t$ and $z=s$ to be arbitrary parameters, we see then that

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=t\left(\begin{array}{r}
-3 \\
1 \\
0
\end{array}\right)+s\left(\begin{array}{r}
-7 \\
0 \\
1
\end{array}\right)
$$

which shows that $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ is in the span of the vectors $\left(\begin{array}{r}-3 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{r}-7 \\ 0 \\ 1\end{array}\right)$. Hence, it suffices to show that both $\left(\begin{array}{r}-3 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{r}-7 \\ 0 \\ 1\end{array}\right)$ are in $\operatorname{span}\left\{v_{1}, v_{2}\right\}$. Observe that

$$
\left(\begin{array}{r}
-3 \\
1 \\
0
\end{array}\right)=-v_{1}-v_{2}
$$

and

$$
\left(\begin{array}{r}
-7 \\
0 \\
1
\end{array}\right)=-3 v_{1}-2 v_{2}
$$

Thus, both $\left(\begin{array}{r}-3 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{r}-7 \\ 0 \\ 1\end{array}\right)$ are in $\operatorname{span}\left\{v_{1}, v_{2}\right\}$. We therefore conclude that, if $\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \in Q$, then $\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \in \operatorname{span}\left\{v_{1}, v_{2}\right\}$. Consequently, the span of v_{1} and v_{2} is the plane in \mathbb{R}^{3} determined by the equation $x+3 y+7 z=0$.
4. Let v_{1} and v_{2} be as in Problem 1 above. Find a vector in \mathbb{R}^{3} which is not in the span of v_{1} and v_{2}. Call the vector v_{4} and show that

$$
\operatorname{span}\left\{v_{1}, v_{2}, v_{4}\right\}=\mathbb{R}^{3}
$$

Solution: We saw in the solution to the previous problem that $\operatorname{span}\left\{v_{2}, v_{2}\right\}$ is the plane in \mathbb{R}^{3} given by the equation $x+3 y+7 z=0$. Thus, any vector in \mathbb{R}^{3} whose components do not satisfy the equation is not in the span of v_{1} and v_{2}. In particular the vector $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ is not in $\operatorname{span}\left\{v_{1}, v_{2}\right\}$. Let

$$
v_{4}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

We show that

$$
\operatorname{span}\left\{v_{1}, v_{2}, v_{4}\right\}=\mathbb{R}^{3}
$$

Observe first that

$$
\operatorname{span}\left\{v_{1}, v_{2}, v_{4}\right\} \subseteq \mathbb{R}^{3}
$$

since v_{1}, v_{2} and v_{4} are vectors in \mathbb{R}^{3}. Hence, it suffices to show that

$$
\mathbb{R}^{3} \subseteq \operatorname{span}\left\{v_{1}, v_{2}, v_{4}\right\}
$$

Let $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ be an arbitrary vector in \mathbb{R}^{3}. We would like to find scalars c_{1}, c_{2} and c_{3} such that

$$
\begin{gathered}
c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right), \\
c_{1}\left(\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right)+c_{2}\left(\begin{array}{r}
2 \\
-3 \\
1
\end{array}\right)+c_{3}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) .
\end{gathered}
$$

or

This leads to the system of equations

$$
\begin{cases}c_{1}+2 c_{2} & =x \\ 2 c_{1}-3 c_{2} & =y \\ -c_{1}+c_{2}+c_{3} & =z\end{cases}
$$

Solving for c_{1} and c_{2} in the first two equations yields

$$
\begin{aligned}
& c_{1}=\frac{3}{7} x+\frac{2}{7} y \\
& c_{2}=\frac{2}{7} x-\frac{1}{7} y .
\end{aligned}
$$

Substituting these into the third equation and solving for c_{3} then yields

$$
c_{3}=\frac{1}{7} x+\frac{3}{7} y+z
$$

Hence, every vector in \mathbb{R}^{3} can be written as a linear combination of v_{1}, v_{2} and v_{4}; in fact,

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\frac{3}{7} x+\frac{2}{7} y\right) v_{1}+\left(\frac{2}{7} x-\frac{1}{7} y\right) v_{2}+\left(\frac{1}{7} x+\frac{3}{7} y+z\right) v_{4} .
$$

We therefore conclude that the set $\left\{v_{1}, v_{2}, v_{4}\right\}$ spans \mathbb{R}^{3}.
5. Let v_{1} and v_{2} be as in Problem 1 above. Determine, if possible, a value of c for which the vector

$$
\left(\begin{array}{l}
4 \\
1 \\
c
\end{array}\right)
$$

lies in $\operatorname{span}\left\{v_{1}, v_{2}\right\}$. How many values of c with that property are there?
Solution: Look for scalars c_{1} and c_{2} such that

$$
c_{1} v_{1}+c_{2} v_{2}=\left(\begin{array}{l}
4 \\
1 \\
c
\end{array}\right)
$$

This leads to the system of equations

$$
\left\{\begin{array}{l}
c_{1}+2 c_{2}=4 \\
2 c_{1}-3 c_{2}=1 \\
-c_{1}+c_{2}=c
\end{array}\right.
$$

Solving for c_{1} and c_{2} in the first two equations yields

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=1
\end{aligned}
$$

It then follows from the third equation that $c=-1$. Thus, c must be -1 in order for the vector $\left(\begin{array}{l}4 \\ 1 \\ c\end{array}\right)$ to be in the span of v_{1} and v_{2}. There is only one value of c for which this is the case.

Alternate Solution: We can also solve this problem by using the characterization of $\operatorname{span}\left\{v_{1}, v_{2}\right\}$ as the plane determined by the equation $x+3 y+7 z=0$. If the point $\left(\begin{array}{l}4 \\ 1 \\ c\end{array}\right)$ is in the plane, then $x=4$, $y=1$, and $z=c$. It then follows that

$$
4+3+7 c=0
$$

from which we get that $c=-1$.

