Solutions to Assignment \#3

1. Consider the vectors v_{1}, v_{2} and v_{3} in \mathbb{R}^{3} given by

$$
v_{1}=\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right), \quad v_{2}=\left(\begin{array}{l}
2 \\
5 \\
1
\end{array}\right) \quad \text { and } \quad v_{3}=\left(\begin{array}{r}
0 \\
-4 \\
3
\end{array}\right)
$$

(a) If possible, write the vector v_{3} as a linear combination of v_{1} and v_{2}.

Solution: Consider the equation

$$
c_{1}\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right)+c_{2}\left(\begin{array}{l}
2 \\
5 \\
1
\end{array}\right)=\left(\begin{array}{r}
0 \\
-4 \\
3
\end{array}\right) .
$$

This leads to the system

$$
\begin{cases}c_{1}+2 c_{2} & =0 \\ 5 c_{2} & =-4 \\ -c_{1}+c_{2} & =3\end{cases}
$$

Solving for c_{1} and c_{2} in the first two equations leads to

$$
\begin{aligned}
& c_{2}=-4 / 5 \\
& c_{1}=8 / 5 .
\end{aligned}
$$

Substituting for these into the third equation leads to

$$
-12 / 5=3
$$

which is impossible. Thus, there are no scalars c_{1} and c_{2} such that $v_{3}=c_{1} v_{1}+c_{2} v_{2}$; in other words, it is impossible to write the vector v_{3} as a linear combination of v_{1} and v_{2}.
(b) Determine whether the set $\left\{v_{1}, v_{2}, v_{3}\right\}$ spans \mathbb{R}^{3}.

Solution: We need to show that any vector, $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$, in \mathbb{R}^{3} can be written as a linear of the vectors v_{1}, v_{2} and v_{3}. Thus, we look for scalars c_{1}, c_{2} and c_{3} such that

$$
c_{1}\left(\begin{array}{r}
1 \tag{1}\\
0 \\
-1
\end{array}\right)+c_{2}\left(\begin{array}{l}
2 \\
5 \\
1
\end{array}\right)+c_{3}\left(\begin{array}{r}
0 \\
-4 \\
3
\end{array}\right)=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

This leads to the system

$$
\begin{cases}c_{1}+2 c_{2} & =x \tag{2}\\ 5 c_{2}-4 c_{3} & =y \\ -c_{1}+c_{2}+3 c_{3} & =z\end{cases}
$$

Solving for c_{1} in the first equation in (2) and substituting for c_{1} in the third equation leads to the two equations

$$
\left\{\begin{array}{l}
5 c_{2}-4 c_{3}=y \\
3 c_{2}+3 c_{3}=x+z
\end{array}\right.
$$

Solving this system yields

$$
\begin{aligned}
& c_{2}=\frac{4}{27} x+\frac{4}{9} y+\frac{5}{27} z \\
& c_{3}=\frac{5}{27} x-\frac{1}{9} y+\frac{5}{27} z
\end{aligned}
$$

It then follows from the first equation in (2) that

$$
c_{1}=\frac{19}{27} x-\frac{8}{9} y-\frac{10}{27} z .
$$

Consequently, there exist c_{1}, c_{2} and c_{3}, depending on x, y and z, for which (1) holds for any vector $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ in \mathbb{R}^{3}. We therefore conclude that the set $\left\{v_{1}, v_{2}, v_{3}\right\}$ spans \mathbb{R}^{3}.
2. Let v_{1}, v_{2} and v_{3} be as given in the previous problem. Find a linearly independent subset of $\left\{v_{1}, v_{2}, v_{3}\right\}$ which spans $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}$.

Solution: The set $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly independent. To see why this is so, consider the equation

$$
c_{1}\left(\begin{array}{r}
1 \tag{3}\\
0 \\
-1
\end{array}\right)+c_{2}\left(\begin{array}{l}
2 \\
5 \\
1
\end{array}\right)+c_{3}\left(\begin{array}{r}
0 \\
-4 \\
3
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

This leads to the system

$$
\begin{cases}c_{1}+2 c_{2} & =0 \tag{4}\\ 5 c_{2}-4 c_{3} & =0 \\ -c_{1}+c_{2}+3 c_{3} & =0\end{cases}
$$

Solving for c_{1} in the first equation and substituting for c_{1} in the third equation leads to the two equations

$$
\left\{\begin{array}{l}
5 c_{2}-4 c_{3}=0 \\
3 c_{2}+3 c_{3}=0
\end{array}\right.
$$

Solving this system yields

$$
\begin{aligned}
& c_{2}=0 \\
& c_{3}=0 .
\end{aligned}
$$

It then follows from the third equation in (4) that $c_{1}=0$. Consequently, equation (3) has only the trivial solution $c_{1}=c_{2}=c_{3}=0$. We therefore conclude that the set $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly independent. Hence, $\left\{v_{1}, v_{2}, v_{3}\right\}$ is al linearly independent subset of itself which spans $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}$
3. Show that the set $\left\{\left(\begin{array}{l}2 \\ 4 \\ 2\end{array}\right),\left(\begin{array}{l}3 \\ 2 \\ 0\end{array}\right),\left(\begin{array}{r}1 \\ -2 \\ 2\end{array}\right)\right\}$ is a linearly independent subset of \mathbb{R}^{3}.

Solution: Consider the equation

$$
c_{1}\left(\begin{array}{l}
2 \tag{5}\\
4 \\
2
\end{array}\right)+c_{2}\left(\begin{array}{l}
3 \\
2 \\
0
\end{array}\right)+c_{3}\left(\begin{array}{r}
1 \\
-2 \\
2
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

This leads to the system

$$
\begin{cases}2 c_{1}+3 c_{2}+c_{3} & =0 \tag{6}\\ 4 c_{1}+2 c_{2}-2 c_{3} & =0 \\ 2 c_{1}+2 c_{3} & =0\end{cases}
$$

Solving for c_{3} in the third equation in (6) and substituting for c_{3} into the first and second equations leads to the two equations

$$
\left\{\begin{array}{l}
c_{1}+3 c_{2}=0 \\
6 c_{1}+2 c_{2}=0
\end{array}\right.
$$

Solving this system yields

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=0 .
\end{aligned}
$$

It then follows from the third equation in (6) that $c_{3}=0$. Consequently, equation (5) has only the trivial solution $c_{1}=c_{2}=c_{3}=0$. We therefore conclude that the set $\left\{\left(\begin{array}{l}2 \\ 4 \\ 2\end{array}\right),\left(\begin{array}{l}3 \\ 2 \\ 0\end{array}\right),\left(\begin{array}{r}1 \\ -2 \\ 2\end{array}\right)\right\}$ is linearly independent.
4. Determine whether the set $\left\{\left(\begin{array}{r}2 \\ -1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{r}0 \\ 2 \\ -1 \\ -2\end{array}\right),\left(\begin{array}{r}2 \\ 0 \\ -1 \\ 0\end{array}\right)\right\}$ is a linearly independent subset of \mathbb{R}^{4}.

Solution: Consider the equation

$$
c_{1}\left(\begin{array}{r}
2 \tag{7}\\
-1 \\
0 \\
1
\end{array}\right)+c_{2}\left(\begin{array}{r}
0 \\
2 \\
-1 \\
-2
\end{array}\right)+c_{3}\left(\begin{array}{r}
2 \\
0 \\
-1 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) .
$$

This leads to the system

$$
\left\{\begin{array}{l}
2 c_{1}+2 c_{3}=0 \tag{8}\\
-c_{1}+2 c_{2}=0 \\
-c_{2}-c_{3}=0 \\
c_{1}-2 c_{2}=0
\end{array}\right.
$$

This system reduces to the system of two equations

$$
\begin{cases}c_{1}+c_{3} & = \tag{9}\\ -c_{1}+2 c_{2} & =0 \\ -c_{2}-c_{3} & =0\end{cases}
$$

since the second and the fourth equations in (8) are the same equation. Solving for c_{3} in the third equation in (9) and substituting into the first equation in the same system leads to

$$
\begin{cases}c_{1}-c_{2} & =0 \tag{10}\\ -c_{1}+2 c_{2} & =0\end{cases}
$$

which can be solved to yield that $c_{1}=c_{2}=0$. Consequently, by the first equation in (9), $c_{3}=0$. Thus, the vector equation (7) has only the trivial solution $c_{1}=c_{2}=c_{3}=0$. It then follows that the set

$$
\left\{\left(\begin{array}{r}
2 \\
-1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{r}
0 \\
2 \\
-1 \\
-2
\end{array}\right),\left(\begin{array}{r}
2 \\
0 \\
-1 \\
0
\end{array}\right)\right\}
$$

is a linearly independent subset of \mathbb{R}^{4}.
5. Show that $\left\{\left(\begin{array}{l}2 \\ 2 \\ 6 \\ 0\end{array}\right),\left(\begin{array}{r}0 \\ -1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 3\end{array}\right),\left(\begin{array}{r}1 \\ -1 \\ 3 \\ -2\end{array}\right)\right\}$ is a linearly dependent subset of \mathbb{R}^{4}. Write one of the vectors in the set as a linear combination of the other three. Show that the remaining three vectors form a linearly independent subset of \mathbb{R}^{4}.

Solution: Consider the equation

$$
c_{1}\left(\begin{array}{l}
2 \tag{11}\\
2 \\
6 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{r}
0 \\
-1 \\
0 \\
1
\end{array}\right)+c_{3}\left(\begin{array}{l}
1 \\
2 \\
3 \\
3
\end{array}\right)+c_{4}\left(\begin{array}{r}
1 \\
-1 \\
3 \\
-2
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) .
$$

This leads to the system

$$
\begin{cases}2 c_{1}+c_{3}+c_{4} & =0 \tag{12}\\ 2 c_{1}-c_{2}+2 c_{3}-c_{4} & =0 \\ 6 c_{1}+3 c_{3}+3 c_{4} & =0 \\ c_{2}+3 c_{3}-2 c_{4} & =0\end{cases}
$$

Observe that the first and third equation in (12) are really the same equation since the third is just the first equation times 3 . Solve for c_{4} in the first equation in (12) and substitute into the second and fourth equations to get the system of two equations

$$
\left\{\begin{array}{l}
4 c_{1}-c_{2}+3 c_{3}=0 \tag{13}\\
4 c_{1}+c_{2}+5 c_{3}=0
\end{array}\right.
$$

Next, solve the first equation in (13) for $4 c_{1}$ and substitute into the second equation to obtain

$$
\begin{cases}4 c_{1}-c_{2}+3 c_{3} & =0 \tag{14}\\ 2 c_{2}+2 c_{3} & =0\end{cases}
$$

Solve for c_{2} in the second equation in (14) and substitute into the first to get that

$$
\left\{\begin{array}{l}
c_{1}+c_{3}=0 \tag{15}\\
c_{2}+c_{3}=0
\end{array}\right.
$$

We can then solve for c_{1} and c_{2} in terms of c_{3} to obtain from (15) that

$$
\left\{\begin{array}{l}
c_{1}=-c_{3} \tag{16}\\
c_{2}=-c_{3} .
\end{array}\right.
$$

Setting $c_{3}=t$, where t is an arbitrary parameter, we obtain from (16) that

$$
\left\{\begin{array}{l}
c_{1}=-t \tag{17}\\
c_{2}=-t \\
c_{3}=t
\end{array}\right.
$$

Since t is arbitrary, we see that the system (12) has infinitely many solutions given by

$$
\left\{\begin{array}{l}
c_{1}=-t \tag{18}\\
c_{2}=-t \\
c_{3}=t \\
c_{4}=t
\end{array}\right.
$$

In particular, we then see that the vector equation (11) has a nontrivial solution and therefore the set $\left\{\left(\begin{array}{l}2 \\ 2 \\ 6 \\ 0\end{array}\right),\left(\begin{array}{r}0 \\ -1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 3\end{array}\right),\left(\begin{array}{r}1 \\ -1 \\ 3 \\ -2\end{array}\right)\right\}$
is a linearly dependent subset of \mathbb{R}^{4}. Call the vectors in the set v_{1}, v_{2}, v_{3} and v_{4}, respectively. Taking $t=1$ in (18) we then get from the vector equation in (11) that

$$
-v_{1}-v_{2}+v_{3}+v_{4}=\mathbf{0} .
$$

We can therefore solve for v_{4} in terms of v_{1}, v_{2} and v_{3} :

$$
v_{4}=v_{1}+v_{2}-v_{3} .
$$

We now show that the vectors v_{1}, v_{2} and v_{3} are linearly independent. To do this, consider the equation

$$
c_{1}\left(\begin{array}{l}
2 \tag{19}\\
2 \\
6 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{r}
0 \\
-1 \\
0 \\
1
\end{array}\right)+c_{3}\left(\begin{array}{l}
1 \\
2 \\
3 \\
3
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) .
$$

This leads to the system

$$
\begin{cases}2 c_{1}+c_{3} & =0 \tag{20}\\ 2 c_{1}-c_{2}+2 c_{3} & =0 \\ 6 c_{1}+3 c_{3} & =0 \\ c_{2}+3 c_{3} & =0\end{cases}
$$

Observe that the third equation in (20) is 3 times first; thus, the system (20) reduces to

$$
\begin{cases}2 c_{1}+c_{3} & =0 \tag{21}\\ 2 c_{1}-c_{2}+2 c_{3} & =0 \\ c_{2}+3 c_{3} & =0\end{cases}
$$

Solving for c_{2} in the third equation in (21) and substituting for c_{2} into the second equation leads to the two equations

$$
\left\{\begin{array}{l}
2 c_{1}+c_{3}=0 \\
2 c_{1}+5 c_{3}=0
\end{array}\right.
$$

Solving this system yields

$$
\begin{aligned}
& c_{1}=0 \\
& c_{3}=0
\end{aligned}
$$

It then follows from the third equation in (21) that $c_{2}=0$. Consequently, equation (19) has only the trivial solution $c_{1}=c_{2}=c_{3}=0$. We therefore conclude that the set $\left\{\left(\begin{array}{l}2 \\ 2 \\ 6 \\ 0\end{array}\right),\left(\begin{array}{r}0 \\ -1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 3\end{array}\right)\right\}$ is linearly independent.

