Solutions to Assignment #3

1. Consider the vectors v_1 , v_2 and v_3 in \mathbb{R}^3 given by

$$v_1 = \begin{pmatrix} 1\\0\\-1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 2\\5\\1 \end{pmatrix} \quad \text{and} \quad v_3 = \begin{pmatrix} 0\\-4\\3 \end{pmatrix}.$$

(a) If possible, write the vector v_3 as a linear combination of v_1 and v_2 . **Solution**: Consider the equation

$$c_1 \begin{pmatrix} 1\\0\\-1 \end{pmatrix} + c_2 \begin{pmatrix} 2\\5\\1 \end{pmatrix} = \begin{pmatrix} 0\\-4\\3 \end{pmatrix}$$

This leads to the system

$$\begin{cases} c_1 + 2c_2 = 0\\ 5c_2 = -4\\ -c_1 + c_2 = 3. \end{cases}$$

Solving for c_1 and c_2 in the first two equations leads to

$$c_2 = -4/5$$

 $c_1 = 8/5.$

Substituting for these into the third equation leads to

$$-12/5 = 3$$
,

which is impossible. Thus, there are no scalars c_1 and c_2 such that $v_3 = c_1v_1 + c_2v_2$; in other words, it is impossible to write the vector v_3 as a linear combination of v_1 and v_2 .

(b) Determine whether the set $\{v_1, v_2, v_3\}$ spans \mathbb{R}^3 .

Solution: We need to show that any vector, $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$, in \mathbb{R}^3 can be written as a linear of the vectors v_1 , v_2 and v_3 . Thus, we look for scalars c_1 , c_2 and c_3 such that

$$c_1 \begin{pmatrix} 1\\0\\-1 \end{pmatrix} + c_2 \begin{pmatrix} 2\\5\\1 \end{pmatrix} + c_3 \begin{pmatrix} 0\\-4\\3 \end{pmatrix} = \begin{pmatrix} x\\y\\z \end{pmatrix}.$$
(1)

This leads to the system

$$\begin{cases} c_1 + 2c_2 = x \\ 5c_2 - 4c_3 = y \\ -c_1 + c_2 + 3c_3 = z. \end{cases}$$
(2)

Solving for c_1 in the first equation in (2) and substituting for c_1 in the third equation leads to the two equations

$$\begin{cases} 5c_2 - 4c_3 = y \\ 3c_2 + 3c_3 = x + z. \end{cases}$$

Solving this system yields

$$c_{2} = \frac{4}{27}x + \frac{4}{9}y + \frac{5}{27}z$$

$$c_{3} = \frac{5}{27}x - \frac{1}{9}y + \frac{5}{27}z.$$

It then follows from the first equation in (2) that

$$c_1 = \frac{19}{27}x - \frac{8}{9}y - \frac{10}{27}z.$$

Consequently, there exist c_1 , c_2 and c_3 , depending on x, y and z, for which (1) holds for any vector $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ in \mathbb{R}^3 . We therefore conclude that the set $\{v_1, v_2, v_3\}$ spans \mathbb{R}^3 .

2. Let v_1 , v_2 and v_3 be as given in the previous problem. Find a linearly independent subset of $\{v_1, v_2, v_3\}$ which spans span $\{v_1, v_2, v_3\}$.

Solution: The set $\{v_1, v_2, v_3\}$ is linearly independent. To see why this is so, consider the equation

$$c_1 \begin{pmatrix} 1\\0\\-1 \end{pmatrix} + c_2 \begin{pmatrix} 2\\5\\1 \end{pmatrix} + c_3 \begin{pmatrix} 0\\-4\\3 \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}.$$
 (3)

This leads to the system

$$\begin{cases} c_1 + 2c_2 = 0\\ 5c_2 - 4c_3 = 0\\ -c_1 + c_2 + 3c_3 = 0. \end{cases}$$
(4)

Solving for c_1 in the first equation and substituting for c_1 in the third equation leads to the two equations

$$\begin{cases} 5c_2 - 4c_3 = 0\\ 3c_2 + 3c_3 = 0. \end{cases}$$

Solving this system yields

$$\begin{array}{rcl} c_2 &=& 0\\ c_3 &=& 0. \end{array}$$

It then follows from the third equation in (4) that $c_1 = 0$. Consequently, equation (3) has only the trivial solution $c_1 = c_2 = c_3 = 0$. We therefore conclude that the set $\{v_1, v_2, v_3\}$ is linearly independent. Hence, $\{v_1, v_2, v_3\}$ is al linearly independent subset of itself which spans span $\{v_1, v_2, v_3\}$

3. Show that the set
$$\left\{ \begin{pmatrix} 2\\4\\2 \end{pmatrix}, \begin{pmatrix} 3\\2\\0 \end{pmatrix}, \begin{pmatrix} 1\\-2\\2 \end{pmatrix} \right\}$$
 is a linearly independent subset of \mathbb{R}^3 .

Solution: Consider the equation

$$c_1 \begin{pmatrix} 2\\4\\2 \end{pmatrix} + c_2 \begin{pmatrix} 3\\2\\0 \end{pmatrix} + c_3 \begin{pmatrix} 1\\-2\\2 \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}.$$
 (5)

This leads to the system

$$\begin{cases} 2c_1 + 3c_2 + c_3 = 0\\ 4c_1 + 2c_2 - 2c_3 = 0\\ 2c_1 + 2c_3 = 0. \end{cases}$$
(6)

Solving for c_3 in the third equation in (6) and substituting for c_3 into the first and second equations leads to the two equations

$$\begin{cases} c_1 + 3c_2 = 0\\ 6c_1 + 2c_2 = 0. \end{cases}$$

Solving this system yields

$$\begin{array}{rcl} c_1 &=& 0\\ c_2 &=& 0. \end{array}$$

It then follows from the third equation in (6) that $c_3 = 0$. Consequently, equation (5) has only the trivial solution $c_1 = c_2 = c_3 = 0$. We therefore conclude that the set $\left\{ \begin{pmatrix} 2\\4\\2 \end{pmatrix}, \begin{pmatrix} 3\\2\\0 \end{pmatrix}, \begin{pmatrix} 1\\-2\\2 \end{pmatrix} \right\}$ is \square linearly independent.

4. Determine whether the set
$$\left\{ \begin{pmatrix} 2\\-1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\2\\-1\\-2 \end{pmatrix}, \begin{pmatrix} 2\\0\\-1\\0 \end{pmatrix} \right\}$$
 is a linearly independent subset of \mathbb{P}^4

dent subset of \mathbb{R}^4 .

Solution: Consider the equation

$$c_{1}\begin{pmatrix}2\\-1\\0\\1\end{pmatrix}+c_{2}\begin{pmatrix}0\\2\\-1\\-2\end{pmatrix}+c_{3}\begin{pmatrix}2\\0\\-1\\0\end{pmatrix}=\begin{pmatrix}0\\0\\0\\0\end{pmatrix}.$$
 (7)

This leads to the system

$$\begin{cases} 2c_1 + 2c_3 = 0 \\ -c_1 + 2c_2 = 0 \\ -c_2 - c_3 = 0 \\ c_1 - 2c_2 = 0. \end{cases}$$
(8)

This system reduces to the system of two equations

$$\begin{cases} c_1 + c_3 = 0 \\ -c_1 + 2c_2 = 0 \\ -c_2 - c_3 = 0, \end{cases}$$
(9)

since the second and the fourth equations in (8) are the same equation. Solving for c_3 in the third equation in (9) and substituting into the first equation in the same system leads to

$$\begin{cases} c_1 - c_2 = 0\\ -c_1 + 2c_2 = 0, \end{cases}$$
(10)

which can be solved to yield that $c_1 = c_2 = 0$. Consequently, by the first equation in (9), $c_3 = 0$. Thus, the vector equation (7) has only the trivial solution $c_1 = c_2 = c_3 = 0$. It then follows that the set

$$\left\{ \begin{pmatrix} 2\\-1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\2\\-1\\-2 \end{pmatrix}, \begin{pmatrix} 2\\0\\-1\\0 \end{pmatrix} \right\}$$

is a linearly independent subset of \mathbb{R}^4 .

5. Show that $\left\{ \begin{pmatrix} 2\\2\\6\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\3\\3 \end{pmatrix}, \begin{pmatrix} 1\\-1\\3\\-2 \end{pmatrix} \right\}$ is a linearly dependent subset

of \mathbb{R}^4 . Write one of the vectors in the set as a linear combination of the other three. Show that the remaining three vectors form a linearly independent subset of \mathbb{R}^4 .

Solution: Consider the equation

$$c_1 \begin{pmatrix} 2\\2\\6\\0 \end{pmatrix} + c_2 \begin{pmatrix} 0\\-1\\0\\1 \end{pmatrix} + c_3 \begin{pmatrix} 1\\2\\3\\3 \end{pmatrix} + c_4 \begin{pmatrix} 1\\-1\\3\\-2 \end{pmatrix} = \begin{pmatrix} 0\\0\\0\\0 \end{pmatrix}.$$
(11)

This leads to the system

$$\begin{cases} 2c_1 + c_3 + c_4 = 0\\ 2c_1 - c_2 + 2c_3 - c_4 = 0\\ 6c_1 + 3c_3 + 3c_4 = 0\\ c_2 + 3c_3 - 2c_4 = 0. \end{cases}$$
(12)

Observe that the first and third equation in (12) are really the same equation since the third is just the first equation times 3. Solve for c_4 in the first equation in (12) and substitute into the second and fourth equations to get the system of two equations

$$\begin{cases} 4c_1 - c_2 + 3c_3 = 0\\ 4c_1 + c_2 + 5c_3 = 0. \end{cases}$$
(13)

Math 60. Rumbos

Next, solve the first equation in (13) for $4c_1$ and substitute into the second equation to obtain

$$\begin{cases} 4c_1 - c_2 + 3c_3 = 0\\ 2c_2 + 2c_3 = 0. \end{cases}$$
(14)

Solve for c_2 in the second equation in (14) and substitute into the first to get that

$$\begin{cases} c_1 + c_3 = 0\\ c_2 + c_3 = 0. \end{cases}$$
(15)

We can then solve for c_1 and c_2 in terms of c_3 to obtain from (15) that

$$\begin{cases} c_1 = -c_3 \\ c_2 = -c_3. \end{cases}$$
(16)

Setting $c_3 = t$, where t is an arbitrary parameter, we obtain from (16) that

$$\begin{cases}
c_1 = -t \\
c_2 = -t \\
c_3 = t.
\end{cases}$$
(17)

Since t is arbitrary, we see that the system (12) has infinitely many solutions given by

$$\begin{cases}
c_1 = -t \\
c_2 = -t \\
c_3 = t \\
c_4 = t.
\end{cases}$$
(18)

In particular, we then see that the vector equation (11) has a nontrivial solution and therefore the set $\left\{ \begin{pmatrix} 2\\2\\6\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\3\\3 \end{pmatrix}, \begin{pmatrix} 1\\-1\\3\\-2 \end{pmatrix} \right\}$

is a linearly dependent subset of \mathbb{R}^4 . Call the vectors in the set v_1 , v_2 , v_3 and v_4 , respectively. Taking t = 1 in (18) we then get from the vector equation in (11) that

$$-v_1 - v_2 + v_3 + v_4 = \mathbf{0}.$$

We can therefore solve for v_4 in terms of v_1 , v_2 and v_3 :

$$v_4 = v_1 + v_2 - v_3.$$

Math 60. Rumbos

We now show that the vectors v_1 , v_2 and v_3 are linearly independent. To do this, consider the equation

$$c_{1}\begin{pmatrix} 2\\2\\6\\0 \end{pmatrix} + c_{2}\begin{pmatrix} 0\\-1\\0\\1 \end{pmatrix} + c_{3}\begin{pmatrix} 1\\2\\3\\3 \end{pmatrix} = \begin{pmatrix} 0\\0\\0\\0 \end{pmatrix}.$$
 (19)

This leads to the system

$$\begin{cases}
2c_1 + c_3 = 0 \\
2c_1 - c_2 + 2c_3 = 0 \\
6c_1 + 3c_3 = 0 \\
c_2 + 3c_3 = 0.
\end{cases}$$
(20)

Observe that the third equation in (20) is 3 times first; thus, the system (20) reduces to

$$\begin{cases} 2c_1 + c_3 = 0\\ 2c_1 - c_2 + 2c_3 = 0\\ c_2 + 3c_3 = 0. \end{cases}$$
(21)

Solving for c_2 in the third equation in (21) and substituting for c_2 into the second equation leads to the two equations

$$\begin{cases} 2c_1 + c_3 = 0\\ 2c_1 + 5c_3 = 0. \end{cases}$$

Solving this system yields

$$\begin{array}{rcl} c_1 &=& 0\\ c_3 &=& 0. \end{array}$$

It then follows from the third equation in (21) that $c_2 = 0$. Conse-

quently, equation (19) has only the trivial solution $c_1 = c_2 = c_3 = 0$. We therefore conclude that the set $\left\{ \begin{pmatrix} 2\\2\\6\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\3\\3 \end{pmatrix} \right\}$ is \square linearly independent.

Fall 2014 7