Solutions to Assignment \#4

1. Let $S=\left\{\left.\binom{x}{y} \in \mathbb{R}^{2} \right\rvert\, x \geqslant 0, y \geqslant 0\right\}$. Show that S is closed under vector addition in \mathbb{R}^{2}. Explain why S is not a subspace of \mathbb{R}^{2}.

Solution: Let $v=\binom{x_{1}}{y_{1}}$ and $w=\binom{x_{2}}{y_{2}}$ be vectors in S. It then follows that $x_{1}, y_{1}, x_{2}, y_{2} \geqslant 0$. Consequently,

$$
x_{1}+x_{2} \geqslant 0 \quad \text { and } \quad y_{1}+y_{2} \geqslant 0
$$

which shows that

$$
v+w=\binom{x_{1}+x_{2}}{y_{1}+y_{2}} \in S
$$

and therefore S is closed under vector addition in \mathbb{R}^{2}. However, S is not a subspace of \mathbb{R}^{2} because S is not closed under scalar multiplication; to see this, note that $\binom{1}{1} \in S$, but

$$
(-1) \cdot\binom{1}{1}=\binom{-1}{-1} \notin S
$$

2. Let $a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}$ be real constants. Let W be the solution set of the homogeneous system

$$
\left\{\begin{array}{l}
a_{1} x_{1}+b_{1} x_{2}+c_{1} x_{3}=0 \\
a_{2} x_{1}+b_{2} x_{2}+c_{2} x_{3}=0
\end{array}\right.
$$

Prove that W is a subspace of \mathbb{R}^{3}.
Solution: Note that W is a subset of \mathbb{R}^{3} given by

$$
W=\left\{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \in \mathbb{R}^{3} \left\lvert\,\left\{\begin{array}{l}
a_{1} x_{1}+b_{1} x_{2}+c_{1} x_{3}=0 \\
a_{2} x_{1}+b_{2} x_{2}+c_{2} x_{3}=0
\end{array}\right\}\right.\right.
$$

First, observe that $x_{1}=x_{2}=x_{3}=0$ solves the system. Consequently, W is not empty.

Suppose that $\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ and $\left(\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right)$ are solutions of the system. Then,

$$
\left\{\begin{array}{l}
a_{1} x_{1}+b_{1} x_{2}+c_{1} x_{3}=0 \\
a_{2} x_{1}+b_{2} x_{2}+c_{2} x_{3}=0
\end{array}\right.
$$

and

$$
\left\{\begin{aligned}
a_{1} y_{1}+b_{1} y_{2}+c_{1} y_{3} & =0 \\
a_{2} y_{1}+b_{2} y_{2}+c_{2} y_{3} & =0
\end{aligned}\right.
$$

Adding the first equations of the systems and the second equations yields

$$
\left\{\begin{array}{l}
a_{1}\left(x_{1}+y_{1}\right)+b_{1}\left(x_{2}+y_{2}\right)+c_{1}\left(x_{3}+y_{3}\right)=0 \\
a_{2}\left(x_{1}+y_{1}\right)+b_{2}\left(x_{2}+y_{2}\right)+c_{2}\left(x_{3}+y_{3}\right)=0,
\end{array}\right.
$$

where we have used the distributive property for real numbers. It then follows that $\left(\begin{array}{l}x_{1}+y_{1} \\ x_{2}+y_{2} \\ x_{3}+y_{3}\end{array}\right)$ is a solution of the system, and therefore W is closed under vector addition in \mathbb{R}^{3}.
Next, suppose that $\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ is a solution of the system

$$
\left\{\begin{array}{l}
a_{1} x_{1}+b_{1} x_{2}+c_{1} x_{3}=0 \\
a_{2} x_{1}+b_{2} x_{2}+c_{2} x_{3}=0
\end{array}\right.
$$

Multiplying both equations in the system by a scalar t we obtain

$$
\left\{\begin{array}{l}
a_{1}\left(t x_{1}\right)+b_{1}\left(t x_{2}\right)+c_{1}\left(t x_{3}\right)=0 \\
a_{2}\left(t x_{1}\right)+b_{2}\left(t x_{2}\right)+c_{2}\left(t x_{3}\right)=0
\end{array}\right.
$$

where we have applied the distributive and associative properties for real numbers. It then follows that $\left(\begin{array}{l}t x_{1} \\ t x_{2} \\ t x_{3}\end{array}\right) \in W$, and therefore W is also closed under scalar multiplication. Hence, we conclude that W is a subspace of \mathbb{R}^{3}.
3. Let $L=\left\{\left.\binom{x}{y} \in \mathbb{R}^{2} \right\rvert\, y=2 x+1\right\}$. Determine whether or not L is a subspace of \mathbb{R}^{2}.

Solution: L is not a subspace of \mathbb{R}^{2}. To see this, note that the vector $\binom{0}{1}$ is in L; however, the vector $(-1)\binom{0}{1}=\binom{0}{-1}$ is not in L since $y=-1$ and $x=0$ do not satisfy the equation $y=2 x+1$.
4. Let W be a subspace of \mathbb{R}^{n}. Use the definition of subspace to prove the following statements.
(a) If $v \in W$, then W must also contain the additive inverse of v.

Proof: Since W is subspace of \mathbb{R}^{n}, it is closed under scalar multiplication. It then follows that, if $v \in W$, then $(-1) v \in W$; that is $-v \in W$.
(b) W contains the zero vector.

Proof: Since W is a subspace, it is non-empty; therefore, it contains a vector v. By the previous part, $-v \in W$. Hence, since W is closed under vector addition, $v+(-v) \in W$, which shows that $\mathbf{0} \in W$.
5. Given two subsets A and B of \mathbb{R}^{n}, the intersection of A and B, denoted by $A \cap B$, is the set which contains all vectors that are both in A and B; in symbols,

$$
A \cap B=\left\{v \in \mathbb{R}^{n} \mid v \in A \text { and } v \in B\right\} .
$$

(a) Prove that $A \cap B \subseteq A$ and $A \cap B \subseteq B$.

Proof: If $x \in A \cap B$ then $x \in A$ and $x \in B$, by the definition of intersection. Thus, $x \in B$. We have therefore shown that

$$
x \in A \cap B \Rightarrow x \in A
$$

which shows that $A \cap B \subseteq A$.
A similar argument shows that $A \cap B \subseteq B$.
(b) Prove that if W_{1} and W_{2} are two subspaces of \mathbb{R}^{n}, then the intersection $W_{1} \cap W_{2}$ is a subspace of \mathbb{R}^{n} which is contained in both W_{1} and W_{2}.

Proof: We first show that $W_{1} \cap W_{2}$ is a subspace of \mathbb{R}^{n}.
Since W_{1} and W_{2} are subspace of \mathbb{R}^{n}, it follows from the result in part (b) of problem 4 in this assignment that $\mathbf{0} \in W_{1}$ and $\mathbf{0} \in W_{2}$. Consequently, $\mathbf{0} \in W_{1} \cap W_{2}$, which shows that $W_{1} \cap W_{2}$ is not empty.
Next, suppose that $v, w \in W_{1} \cap W_{2}$. Then, $v \in W_{1}$ and $w \in W_{1}$ so that

$$
v+w \in W_{1}
$$

since W_{1} is closed under vector addition. Similarly, we can show that

$$
v+w \in W_{2}
$$

It then follows that

$$
v+w \in W_{1} \cap W_{2},
$$

and therefore $W_{1} \cap W_{2}$ is closed under vector addition.
Finally, if $v \in W_{1} \cap W_{2}$ and $t \in \mathbb{R}$, we have that $v \in W_{1}$ and $v \in W_{2}$ and therefore

$$
t v \in W_{1} \quad \text { and } \quad t v \in W_{2}
$$

since W_{1} and W_{2} are closed under scalar multiplication. It then follows that

$$
t v \in W_{1} \cap W_{2}
$$

which shows that $W_{1} \cap W_{2}$ is closed under scalar multiplication.
We have shown that $W_{1} \cap W_{2}$ is a non-empty subset of \mathbb{R}^{2} which is closed under the vector space operations of \mathbb{R}^{n}; that is, $W_{1} \cap W_{2}$ is a subspace of \mathbb{R}^{n}.
Applying part (a) in this problem we also conclude that $W_{1} \cap W_{2}$ is a subspace of \mathbb{R}^{n} which is contained in both W_{1} and W_{2}.

