Solutions to Assignment #4

1. Let $S = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid x \ge 0, y \ge 0 \right\}$. Show that S is closed under vector addition in \mathbb{R}^2 . Explain why S is not a subspace of \mathbb{R}^2 .

Solution: Let $v = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$ and $w = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$ be vectors in S. It then follows that $x_1, y_1, x_2, y_2 \ge 0$. Consequently,

$$x_1 + x_2 \ge 0$$
 and $y_1 + y_2 \ge 0$,

which shows that

$$v + w = \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix} \in S,$$

and therefore S is closed under vector addition in \mathbb{R}^2 . However, S is not a subspace of \mathbb{R}^2 because S is not closed under scalar multiplication; to see this, note that $\begin{pmatrix} 1\\1 \end{pmatrix} \in S$, but

$$(-1) \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \end{pmatrix} \notin S.$$

2. Let $a_1, a_2, b_1, b_2, c_1, c_2$ be real constants. Let W be the solution set of the homogeneous system

$$\begin{cases} a_1x_1 + b_1x_2 + c_1x_3 = 0\\ a_2x_1 + b_2x_2 + c_2x_3 = 0. \end{cases}$$

Prove that W is a subspace of \mathbb{R}^3 .

Solution: Note that W is a subset of \mathbb{R}^3 given by

$$W = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 \mid \left\{ \begin{array}{ll} a_1 x_1 + b_1 x_2 + c_1 x_3 &= 0 \\ a_2 x_1 + b_2 x_2 + c_2 x_3 &= 0 \end{array} \right\}$$

First, observe that $x_1 = x_2 = x_3 = 0$ solves the system. Consequently, W is not empty.

Math 60. Rumbos

Suppose that $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ and $\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$ are solutions of the system. Then, $\begin{cases} a_1x_1 + b_1x_2 + c_1x_3 &= 0\\ a_2x_1 + b_2x_2 + c_2x_3 &= 0, \end{cases}$ and

$$\begin{cases} a_1y_1 + b_1y_2 + c_1y_3 = 0\\ a_2y_1 + b_2y_2 + c_2y_3 = 0. \end{cases}$$

Adding the first equations of the systems and the second equations yields

$$\begin{cases} a_1(x_1+y_1) + b_1(x_2+y_2) + c_1(x_3+y_3) = 0\\ a_2(x_1+y_1) + b_2(x_2+y_2) + c_2(x_3+y_3) = 0. \end{cases}$$

where we have used the distributive property for real numbers. It then follows that $\begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ x_3 + y_3 \end{pmatrix}$ is a solution of the system, and therefore W

is closed under vector addition in \mathbb{R}^3 .

Next, suppose that $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ is a solution of the system $\begin{cases} a_1x_1 + b_1x_2 + c_1x_3 = 0\\ a_2x_1 + b_2x_2 + c_2x_3 = 0. \end{cases}$

Multiplying both equations in the system by a scalar t we obtain

$$\begin{cases} a_1(tx_1) + b_1(tx_2) + c_1(tx_3) = 0\\ a_2(tx_1) + b_2(tx_2) + c_2(tx_3) = 0, \end{cases}$$

where we have appred the data real numbers. It then follows that $\begin{pmatrix} tx_1 \\ tx_2 \\ tx_3 \end{pmatrix} \in W$, and therefore W is where we have applied the distributive and associative properties for also closed under scalar multiplication. Hence, we conclude that Wis a subspace of \mathbb{R}^3 .

3. Let $L = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid y = 2x + 1 \right\}$. Determine whether or not L is a subspace

Solution: *L* is not a subspace of \mathbb{R}^2 . To see this, note that the vector $\begin{pmatrix} 0\\1 \end{pmatrix}$ is in *L*; however, the vector $(-1)\begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 0\\-1 \end{pmatrix}$ is not in *L* since y = -1 and x = 0 do not satisfy the equation y = 2x + 1. \Box

- 4. Let W be a subspace of \mathbb{R}^n . Use the definition of subspace to prove the following statements.
 - (a) If $v \in W$, then W must also contain the additive inverse of v.

Proof: Since W is subspace of \mathbb{R}^n , it is closed under scalar multiplication. It then follows that, if $v \in W$, then $(-1)v \in W$; that is $-v \in W$.

(b) W contains the zero vector.

Proof: Since W is a subspace, it is non-empty; therefore, it contains a vector v. By the previous part, $-v \in W$. Hence, since W is closed under vector addition, $v + (-v) \in W$, which shows that $\mathbf{0} \in W$. \Box

5. Given two subsets A and B of \mathbb{R}^n , the **intersection** of A and B, denoted by $A \cap B$, is the set which contains all vectors that are both in A and B; in symbols,

$$A \cap B = \{ v \in \mathbb{R}^n \mid v \in A \text{ and } v \in B \}.$$

(a) Prove that $A \cap B \subseteq A$ and $A \cap B \subseteq B$.

Proof: If $x \in A \cap B$ then $x \in A$ and $x \in B$, by the definition of intersection. Thus, $x \in B$. We have therefore shown that

$$x \in A \cap B \Rightarrow x \in A,$$

which shows that $A \cap B \subseteq A$.

- A similar argument shows that $A \cap B \subseteq B$.
- (b) Prove that if W_1 and W_2 are two subspaces of \mathbb{R}^n , then the intersection $W_1 \cap W_2$ is a subspace of \mathbb{R}^n which is contained in both W_1 and W_2 .

Proof: We first show that $W_1 \cap W_2$ is a subspace of \mathbb{R}^n .

Since W_1 and W_2 are subspace of \mathbb{R}^n , it follows from the result in part (b) of problem 4 in this assignment that $\mathbf{0} \in W_1$ and $\mathbf{0} \in W_2$. Consequently, $\mathbf{0} \in W_1 \cap W_2$, which shows that $W_1 \cap W_2$ is not empty.

Next, suppose that $v, w \in W_1 \cap W_2$. Then, $v \in W_1$ and $w \in W_1$ so that

 $v+w \in W_1$

since W_1 is closed under vector addition. Similarly, we can show that

$$v + w \in W_2$$
.

It then follows that

$$v+w\in W_1\cap W_2,$$

and therefore $W_1 \cap W_2$ is closed under vector addition.

Finally, if $v \in W_1 \cap W_2$ and $t \in \mathbb{R}$, we have that $v \in W_1$ and $v \in W_2$ and therefore

$$tv \in W_1$$
 and $tv \in W_2$

since W_1 and W_2 are closed under scalar multiplication. It then follows that

$$tv \in W_1 \cap W_2$$

which shows that $W_1 \cap W_2$ is closed under scalar multiplication.

We have shown that $W_1 \cap W_2$ is a non–empty subset of \mathbb{R}^2 which is closed under the vector space operations of \mathbb{R}^n ; that is, $W_1 \cap W_2$ is a subspace of \mathbb{R}^n .

Applying part (a) in this problem we also conclude that $W_1 \cap W_2$ is a subspace of \mathbb{R}^n which is contained in both W_1 and W_2 .