Solutions to Assignment \#5

1. Let S_{1} and S_{2} denote two subsets of \mathbb{R}^{n} such that $S_{1} \subseteq S_{2}$.
(a) Prove that $\operatorname{span}\left(S_{1}\right) \subseteq \operatorname{span}\left(S_{2}\right)$.

Proof: Since $S_{2} \subseteq \operatorname{span}\left(S_{2}\right)$, it follows from $S_{1} \subseteq S_{2}$ that

$$
S_{1} \subseteq \operatorname{span}\left(S_{2}\right)
$$

Thus, since $\operatorname{span}\left(S_{2}\right)$ is a subspace and $\operatorname{span}\left(S_{1}\right)$ is the smallest subspace of \mathbb{R}^{n} which contains S_{1}, we have that

$$
\operatorname{span}\left(S_{1}\right) \subseteq \operatorname{span}\left(S_{2}\right)
$$

which was to be shown.
(b) Prove that if S_{1} spans \mathbb{R}^{n}, then $\operatorname{span}\left(S_{2}\right)=\mathbb{R}^{n}$.

Proof: Since $\operatorname{span}\left(S_{1}\right)=\mathbb{R}^{n}$, it follows from part (a) that

$$
\mathbb{R}^{n} \subseteq \operatorname{span}\left(S_{2}\right)
$$

Moreover, $\operatorname{span}\left(S_{2}\right) \subseteq \mathbb{R}^{n}$, since $\operatorname{span}\left(S_{2}\right)$ is a subspace of \mathbb{R}^{n}. We therefore conclude that $\operatorname{span}\left(S_{2}\right)=\mathbb{R}^{n}$.
2. Let $S=\left\{v_{1}, v_{2}, \ldots v_{k}\right\}$, where be $v_{1}, v_{2}, \ldots v_{k}$ are vectors in \mathbb{R}^{n}. The symbol $S \backslash\left\{v_{j}\right\}$ denotes the set S with v_{j} removed from the set, for $j \in\{1,2, \ldots, k\}$. Suppose that $v_{j} \in \operatorname{span}\left(S \backslash\left\{v_{j}\right\}\right)$ for some j in $\{1,2, \ldots, k\}$. Prove that

$$
\operatorname{span}\left(S \backslash\left\{v_{j}\right\}\right)=\operatorname{span}(S)
$$

Proof: Observe that $S \backslash\left\{v_{j}\right\} \subseteq S$. Consequently, by part (a) in Problem 1,

$$
\operatorname{span}\left(S \backslash\left\{v_{j}\right\}\right) \subseteq \operatorname{span}(S)
$$

It remains to show, therefore, that

$$
\operatorname{span}(S) \subseteq \operatorname{span}\left(S \backslash\left\{v_{j}\right\}\right)
$$

To show this, let $v \in \operatorname{span}(S)$, then

$$
\begin{equation*}
v=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{j} v_{j}+\cdots+c_{k} v_{k} \tag{1}
\end{equation*}
$$

for some scalars $c_{1}, c_{2}, \ldots, c_{k}$. Now, since $v_{j} \in \operatorname{span}\left(S \backslash\left\{v_{j}\right\}\right)$, there exist scalars $d_{1}, d_{2}, \ldots, d_{j-1}, d_{j+1}, \ldots, d_{k}$ such that

$$
v_{j}=d_{1} v_{1}+d_{2} v_{2}+\cdots+d_{j-1} v_{j-1}+d_{j+1} v_{j+1} \cdots+d_{k} v_{k}
$$

Substituting for v_{j} in (1) and using the distributive propeties, we then get that

$$
\begin{gathered}
v=c_{1} v_{1}+\cdots+c_{j}\left(d_{1} v_{1}+\cdots+d_{j-1} v_{j-1}+d_{j+1} v_{j+1} \cdots+d_{k} v_{k}\right)+\cdots+c_{k} v_{k} \\
=\left(c_{1}+c_{j} d_{1}\right) v_{1}+\left(c_{2}+c_{j} d_{2}\right) v_{2}+\cdots+\left(c_{j-1}+c_{j} d_{j-1}\right) v_{j-1} \\
+\left(c_{j+1}+c_{j} d_{j+1}\right) v_{j+1}+\cdots+\left(c_{k}+c_{j} d_{k}\right) v_{k},
\end{gathered}
$$

which is a linear combination of vectors is $S \backslash\left\{v_{j}\right\}$. It then follows that

$$
v \in \operatorname{span}(S) \Rightarrow v \in \operatorname{span}\left(S \backslash\left\{v_{j}\right\}\right)
$$

or

$$
\operatorname{span}(S) \subseteq \operatorname{span}\left(S \backslash\left\{v_{j}\right\}\right)
$$

which finishes the proof.
3. Suppose that W is a subspace of \mathbb{R}^{n} and that $v_{1}, v_{2}, \ldots, v_{k} \in W$. Prove that

$$
\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \subseteq W
$$

Proof: Put $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$; then $S \subseteq W$, where W is a subspace of \mathbb{R}^{n}. It then follows that

$$
\operatorname{span}(S) \subseteq W
$$

since $\operatorname{span}(S)$ is the smallest subspace of \mathbb{R}^{n} which contains S.
4. Let W be a subspace of \mathbb{R}^{n}. Prove that if the set $\{v, w\}$ spans W, then the set $\{v, v+w\}$ also spans W.

Proof: Suppose that $W=\operatorname{span}\{v, w\}$. Then, W is a subspace which contains v and w. In then follows from the closure of W with respect to vector addition that $v+w \in W$. We then have that

$$
v, v+w \in W
$$

Thus, by the result of Problem 3,

$$
\begin{equation*}
\operatorname{span}\{v, v+w\} \subseteq W \tag{2}
\end{equation*}
$$

Ont the other hand, since $W=\operatorname{span}\{v, w\}, u \in W$ implies that

$$
u=c_{1} v+c_{2} w
$$

for some scalars c_{1} and c_{2}. Consequently,

$$
\begin{aligned}
u & =c_{1} v+c_{2} w+c_{2} v-c_{2} v \\
& =\left(c_{1}-c_{2}\right) v+c_{2}(w+v),
\end{aligned}
$$

which shows that $u \in \operatorname{span}\{v, v+w\}$; thus,

$$
u \in W \Rightarrow u \in \operatorname{span}\{v, v+w\}
$$

or

$$
W \subseteq \operatorname{span}\{v, v+w\}
$$

Combining this with (2) yields that

$$
W=\operatorname{span}\{v, v+w\}
$$

that is, the set $\{v, v+w\}$ spans W.
5. Let W be the solution set of the homogeneous system

$$
\left\{\begin{array}{cc}
-x_{1}+2 x_{2}-3 x_{3} & =0 \\
2 x_{1}-x_{2}+4 x_{3} & =0
\end{array}\right.
$$

Solve the system to determine W, and find a set, S, of vectors in \mathbb{R}^{3} such that

$$
W=\operatorname{span}(S)
$$

Deduce, therefore, that W is a subspace of \mathbb{R}^{3}.
Solution: Solve the first equation for x_{1} and substitute into the second equation to get that

$$
\begin{cases}-x_{1}+2 x_{2}-3 x_{3} & =0 \tag{3}\\ 3 x_{2}-2 x_{3} & =0\end{cases}
$$

Next, solve for x_{2} in the second equation in system (3) and substitute into the first equation to get

$$
\left\{\begin{array}{l}
-x_{1}-\frac{5}{3} x_{3}=0 \tag{4}\\
3 x_{2}-2 x_{3}=0
\end{array}\right.
$$

Solving for x_{1} and x_{2} in system (4) then yields

$$
\left\{\begin{array}{l}
x_{1}=-\frac{5}{3} x_{3} \tag{5}\\
x_{2}=\frac{2}{3} x_{3} .
\end{array}\right.
$$

Setting $x_{3}=3 t$, where t is an arbitrary parameter, t, then gives the solutions

$$
\left\{\begin{array}{l}
x_{1}=-5 t \tag{6}\\
x_{2}=2 t \\
x_{3}=3 t
\end{array}\right.
$$

We then get that the solution space for the system is

$$
W=\left\{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \in \mathbb{R}^{3} \left\lvert\,\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=t\left(\begin{array}{r}
-5 \\
2 \\
3
\end{array}\right)\right., t \in \mathbb{R}\right\}
$$

or

$$
W=\operatorname{span}(S)
$$

where

$$
S=\left\{\left(\begin{array}{r}
-5 \\
2 \\
3
\end{array}\right)\right\}
$$

Since the span of any set is a subspace, it follows that W is a subspace of \mathbb{R}^{3}.

