Solutions to Assignment \#6

1. Let W denote the solution space of the equation

$$
3 x_{1}+8 x_{2}+2 x_{3}-x_{4}+x_{5}=0 .
$$

Find a linearly independent subset, S, of \mathbb{R}^{5} such that $W=\operatorname{span}(S)$.
Solution: Solve for x_{1} in terms of the other variables to get

$$
x_{1}=-\frac{8}{3} x_{2}-\frac{2}{3} x_{3}+\frac{1}{3} x_{4}-\frac{1}{3} x_{5} .
$$

Setting $x_{2}=-3 t, x_{3}=-3 s, x_{4}=3 r$ and $x_{5}=-3 q$, where t, s, r, q are arbitrary parameters, we get that

$$
\begin{aligned}
& x_{1}=8 t+2 s+r+q \\
& x_{2}=-3 t \\
& x_{3}=-3 s \\
& x_{4}=3 r \\
& x_{5}=-3 q
\end{aligned}
$$

so that

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=t\left(\begin{array}{r}
8 \\
-3 \\
0 \\
0 \\
0
\end{array}\right)+s\left(\begin{array}{r}
2 \\
0 \\
-3 \\
0 \\
0
\end{array}\right)+r\left(\begin{array}{l}
1 \\
0 \\
0 \\
3 \\
0
\end{array}\right)+q\left(\begin{array}{r}
1 \\
0 \\
0 \\
0 \\
-3
\end{array}\right) .
$$

Hence, the solution space, W, is spanned by the set

$$
S=\left\{\left(\begin{array}{r}
8 \\
-3 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{r}
2 \\
0 \\
-3 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0 \\
3 \\
0
\end{array}\right),\left(\begin{array}{r}
1 \\
0 \\
0 \\
0 \\
-3
\end{array}\right)\right\} .
$$

To see that S is linearly independent, consider the vector equation

$$
c_{1}\left(\begin{array}{r}
8 \\
-3 \\
0 \\
0 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{r}
2 \\
0 \\
-3 \\
0 \\
0
\end{array}\right)+c_{3}\left(\begin{array}{l}
1 \\
0 \\
0 \\
3 \\
0
\end{array}\right)+c_{4}\left(\begin{array}{r}
1 \\
0 \\
0 \\
0 \\
-3
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right),
$$

which yields the system

$$
\left\{\begin{aligned}
8 c_{1}+2 c_{2}+c_{3}+c_{4} & =0 \\
-3 c_{1} & =0 \\
-3 c_{2} & =0 \\
3 c_{3} & =0 \\
-3 c_{4} & =0
\end{aligned}\right.
$$

From the last four equations we get that

$$
c_{1}=c_{2}=c_{3}=c_{4}=0
$$

Hence, S is linearly independent and $W=\operatorname{span}(S)$.
2. Let W denote the solution space of the system

$$
\left\{\begin{array}{l}
x_{1}-2 x_{2}-x_{3}=0 \\
2 x_{1}-3 x_{2}+x_{3}=0
\end{array}\right.
$$

Find a linearly independent subset, S, of \mathbb{R}^{3} such that $W=\operatorname{span}(S)$.
Solution: Multiplying the first equation by -2, adding the scalar multiple to the second equation, and replacing the second equation by the result yields the system

$$
\left\{\begin{align*}
x_{1}-2 x_{2}-x_{3} & =0 \tag{1}\\
x_{2}+3 x_{3} & =0
\end{align*}\right.
$$

Next, multiply the second equation in system (1) by 2, add the scalar multiple to the first equation and replace the first equation by the result to get

$$
\left\{\begin{array}{rl}
x_{1}+5 x_{3} & =0 \tag{2}\\
& x_{2}+3 x_{3}
\end{array}=0 .\right.
$$

The system in (2) can now be solved for the leading variable c_{1} and c_{2} to get

$$
\left\{\begin{array}{l}
x_{1}=-5 x_{3} \tag{3}\\
x_{2}=-3 x_{3} .
\end{array}\right.
$$

Setting $x_{3}=-t$, where t is an arbitrary parameter, we obtain the solutions

$$
\begin{aligned}
& x_{1}=5 t \\
& x_{2}=3 t \\
& x_{3}=-t .
\end{aligned}
$$

It then follows that the solution space of the system is

$$
W=\operatorname{span}\left\{\left(\begin{array}{r}
5 \\
3 \\
-1
\end{array}\right)\right\}
$$

Setting

$$
S=\left\{\left(\begin{array}{r}
5 \\
3 \\
-1
\end{array}\right)\right\}
$$

completes the solution to the problem.
3. In the following system, find the value or values of λ for which the system has nontrivial solutions. In each case, give a a linearly independent subset of \mathbb{R}^{2} which generates the solution space.

$$
\left\{\begin{array}{r}
(\lambda-3) x+y=0 \\
x+(\lambda-3) y=0
\end{array}\right.
$$

Solution: Solve for y in the first equation and substitute into the second to get

$$
x-(\lambda-3)^{2} x=0
$$

which factors into

$$
x\left[1-(\lambda-3)^{2}\right]=0 .
$$

If $x=0$, we get from the first equation that $y=0$, and so we get the trivial solution. Hence, since we are looking for non-trivial solutions, we must have that

$$
1-(\lambda-3)^{2}=0
$$

This quadratic equation can be solve to yield

$$
\lambda-3= \pm 1
$$

so that

$$
\lambda=2 \quad \text { or } \quad \lambda=4
$$

In the case that $\lambda=2$ we get the system

$$
\left\{\begin{array}{r}
-x+y=0 \\
x-y=0
\end{array}\right.
$$

which reduces to the equation

$$
x=y
$$

Setting $y=t$, where t is an arbitrary parameter, we get that

$$
\left\{\begin{array}{l}
x=t \\
y=t
\end{array}\right.
$$

so that, for $\lambda=2$, the solution space is

$$
\operatorname{span}\left\{\binom{1}{1}\right\}
$$

On the other hand, if $\lambda=4$, we obtain the system

$$
\left\{\begin{array}{l}
x+y=0 \\
x+y=0
\end{array}\right.
$$

which reduces to the equation

$$
x=-y .
$$

Setting $y=-t$, where t is an arbitrary parameter, we get that

$$
\left\{\begin{array}{lll}
x= & t \\
y= & -t
\end{array}\right.
$$

so that, for $\lambda=2$, the solution space is

$$
\operatorname{span}\left\{\binom{1}{-1}\right\} .
$$

4. Let $v \in \mathbb{R}^{n}$ and S be a subset of \mathbb{R}^{n}.
(a) Show that the set $\{v\}$ is linearly independent if and only if $v \neq \mathbf{0}$.

Proof: Suppose first that $\{v\}$ is linearly independent. If $v=\mathbf{0}$, then

$$
c v=\mathbf{0}
$$

for any scalar c. It then follows that the equation

$$
c v=\mathbf{0}
$$

has nontrivial solutions and therefore $\{v\}$ is linearly dependent. But this contradicts the assumption of independence. We therefore conclude that $v \neq 0$.
Conversely, suppose that $v \neq \mathbf{0}$, and consider the equation

$$
c v=\mathbf{0}
$$

Since $v \neq \mathbf{0}$, we must have that $c=0$ and therefore

$$
c v=\mathbf{0}
$$

has only the trivial solution $c=0$. Consequently, $\{v\}$ is linearly independent.
(b) Show that if $\mathbf{0} \in S$, then S is linearly dependent.

Proof: If $S=\{\mathbf{0}\}$, then S is linearly dependent by part (a). Thus, suppose that $S \neq\{\mathbf{0}\}$. Then, there exists $v \in S$ such that $v \neq \mathbf{0}$. Observe that

$$
\mathbf{0}=0 \cdot v
$$

so that $\mathbf{0}$ is in the span of v, and therefore S is linearly dependent.
5. Let v_{1} and v_{2} be vectors in \mathbb{R}^{n}, and let c be a scalar.
(a) Show that $\left\{v_{1}, v_{2}\right\}$ is linearly independent if and only if $\left\{v_{1}, c v_{1}+v_{2}\right\}$ is also linearly independent.

Proof: First observe that if $c=0,\left\{v_{1}, v_{2}\right\}$ and $\left\{v_{1}, c v_{1}+v_{2}\right\}$ are the same set. So the result holds true in this case. Thus, assume for the rest of the proof that $c \neq 0$.
Suppose that that $\left\{v_{1}, v_{2}\right\}$ is linearly independent and consider the equation

$$
c_{1} v_{1}+c_{2}\left(c v_{1}+v_{2}\right)=\mathbf{0}
$$

Using the distributive and associative properties we get that

$$
\left(c_{1}+c c_{2}\right) v_{1}+c c_{2} v_{2}=\mathbf{0}
$$

It then follows from the linear independence of $\left\{v_{1}, v_{2}\right\}$ that

$$
\begin{aligned}
c_{1}+c c_{2} & =0 \\
c c_{2} & =0 .
\end{aligned}
$$

Since $c \neq 0$, we deduce from the above equations that $c_{1}=c_{2}=0$ is the only solution of the system. Therefore, the set $\left\{v_{1}, c v_{1}+v_{2}\right\}$ is linearly independent.
Conversely, suppose that $\left\{v_{1}, c v_{1}+v_{2}\right\}$ is linearly independent and consider the vector equation

$$
c_{1} v_{1}+c_{2} v_{2}=\mathbf{0}
$$

Adding $c c_{2} v_{1}-c c_{2} v_{1}=\mathbf{0}$ to both sides of the equation we get

$$
c_{1} v_{1}+c_{2} v_{2}+c c_{2} v_{1}-c c_{2} v_{1}=\mathbf{0}
$$

which by virtue of the distributive and associative properties can be written as

$$
\left(c_{1}-c c_{2}\right) v_{1}+c_{2}\left(c v_{1}+v_{2}\right)=\mathbf{0} .
$$

Thus, since $\left\{v_{1}, c v_{1}+v_{2}\right\}$ is linearly independent, it follows that

$$
\begin{aligned}
c_{1}-c c_{2} & =0 \\
c_{2} & =0,
\end{aligned}
$$

from which we get that $c_{1}=c_{2}=0$. Hence, $\left\{v_{1}, v_{2}\right\}$ is linearly independent.
(b) Show that

$$
\operatorname{span}\left(\left\{v_{1}, v_{2}\right\}\right)=\operatorname{span}\left(\left\{v_{1}, c v_{1}+v_{2}\right\}\right)
$$

Proof: Observe that $c v_{1}+v_{2} \in \operatorname{span}\left(\left\{v_{1}, v_{2}\right\}\right)$. Therefore,

$$
\left\{v_{1}, c v_{1}+v_{2}\right\} \subseteq \operatorname{span}\left(\left\{v_{1}, v_{2}\right\}\right)
$$

It then follows that

$$
\operatorname{span}\left\{v_{1}, c v_{1}+v_{2}\right\} \subseteq \operatorname{span}\left(\left\{v_{1}, v_{2}\right\}\right)
$$

since $\operatorname{span}\left\{v_{1}, c v_{1}+v_{2}\right\}$ is the smallest subspace of \mathbb{R}^{n} which contains $\left\{v_{1}, c v_{1}+v_{2}\right\}$. Therefore, it suffices to show that

$$
\operatorname{span}\left(\left\{v_{1}, v_{2}\right\}\right) \subseteq \operatorname{span}\left\{v_{1}, c v_{1}+v_{2}\right\}
$$

To see why the last inclusion is true, observe that

$$
v_{2}=v_{2}+c v_{1}-c v_{1}=-c v_{1}+\left(c v_{1}+v_{2}\right)
$$

which is a linear combination of v_{1} and $c v_{1}+v_{2}$. It then follows that $v_{2} \in \operatorname{span}\left\{v_{1}, c v_{1}+v_{2}\right\}$ and therefore

$$
\left\{v_{1}, v_{2}\right\} \subseteq \operatorname{span}\left\{v_{1}, c v_{1}+v_{2}\right\}
$$

The last inclusion implies that

$$
\operatorname{span}\left\{v_{1}, v_{2}\right\} \subseteq \operatorname{span}\left\{v_{1}, c v_{1}+v_{2}\right\}
$$

because span $\left\{v_{1}, v_{2}\right\}$ is the smallest subspace of \mathbb{R}^{n} which contains $\left\{v_{1}, v_{2}\right\}$.

