Solutions to Assignment \#8

1. Given two subsets A and B of \mathbb{R}^{n}, the union of A and B, denoted by $A \cup B$, is the set which contains all vectors that are in either A or B; in symbols,

$$
A \cup B=\left\{v \in \mathbb{R}^{n} \mid v \in A \text { or } v \in B\right\} .
$$

(a) Prove that $A \subseteq A \cup B$ and $B \subseteq A \cup B$.

Proof: Let $x \in A$; then, certainly, $x \in A$ or $x \in B$. Therefore,

$$
x \in A \Rightarrow x \in A \text { or } x \in B ;
$$

or

$$
x \in A \Rightarrow x \in A \cup B
$$

Consequently, $A \subseteq A \cup B$.
A similar argument shows that $B \subseteq A \cap B$.
(b) Suppose that W_{1} and W_{2} are two subspaces of \mathbb{R}^{2}. Give an example that shows that $W_{1} \cup W_{2}$ is not necessarily a subspace of \mathbb{R}^{2}.

Solution: Let $W_{1}=\operatorname{span}\left\{\binom{1}{0}\right\}$ and $W_{2}=\operatorname{span}\left\{\binom{0}{1}\right\}$. Then $W_{1} \cup W_{2}$ contains all scalar multiples of $\binom{1}{0}$ or all scalar multiples of $\binom{0}{1}$. In particular, vectors $\binom{1}{0}$ and $\binom{0}{1}$ are in the union of W_{1} and W_{2}; however, their sum

$$
\binom{1}{0}+\binom{0}{1}=\binom{1}{1}
$$

is not in $W_{1} \cup W_{2}$. Thus, $W_{1} \cup W_{2}$ is not closed under vector addition. Hence, it is not a subspace of \mathbb{R}^{2}.
2. Given two subsets A and B of \mathbb{R}^{n}, the sum of A and B, denoted by $A+B$, is the set which contains all vectors sums, $v+w$, such that $v \in A$ and $v \in B$; in symbols,

$$
A+B=\left\{u \in \mathbb{R}^{n} \mid u=v+w, \text { where } v \in A \text { and } v \in B\right\}
$$

Prove that if W_{1} and W_{2} are two subspaces of \mathbb{R}^{n}, then $W_{1}+W_{2}$ is also a subspace of \mathbb{R}^{n}.

Proof: Assume that W_{1} and W_{2} are subspaces of \mathbb{R}^{n}.
First, observe that, since W_{1} and W_{2} are subspaces of \mathbb{R}^{n}, then $0 \in W_{1}$ and $0 \in W_{2}$; so that $0=0+0 \in W_{1}+W_{2}$, and therefore $W_{1}+W_{2}$ is not empty.
Next, we show that $W_{1}+W_{2}$ is closed under vector addition and scalar multiplication in \mathbb{R}^{n}.
Let $v \in W_{1}+W_{2}$; then, $v=v_{1}+v_{2}$, where $v_{1} \in W_{1}$ and $v_{2} \in W_{2}$. Then, for any scalar t, we get, by the distributive property,

$$
t v=t\left(v_{1}+t v_{1}\right)=t v_{1}+t v_{2}
$$

where $t v_{1} \in W_{1}$ and $t v_{2} \in W_{2}$, since W_{1} and W_{2} are subspaces of \mathbb{R}^{n}. Consequently, $t v \in W_{1}+W_{2}$ and so $W_{1}+W_{2}$ is closed under scalar multiplication.
Next, let $v, w \in W_{1}+W_{2}$. Then, $v=v_{1}+v_{2}$ and $w=w_{1}+w_{2}$, where $v_{1}, w_{1} \in W_{1}$ and $v_{2}, w_{2} \in W_{2}$. Then, by the associative and commutative properties of vector addition,

$$
v+w=\left(v_{1}+v_{2}\right)+\left(w_{1}+w_{2}\right)=\left(v_{1}+w_{1}\right)+\left(v_{2}+w_{2}\right)
$$

where $v_{1}+w_{1} \in W_{1}$ and $v_{2}+w_{2} \in W_{2}$, since W_{1} and W_{2} are subspaces of \mathbb{R}^{n}. Thus, $v+w \in W_{1}+W_{2}$ and so $W_{1}+W_{2}$ is closed under vector addition.
3. Let W_{1} and W_{2} be two subspaces of \mathbb{R}^{n} and define $W_{1}+W_{2}$ as in the previous problem. Prove that $W_{1} \cap W_{2}, W_{1}$ and W_{2} are subspaces of $W_{1}+W_{2}$.

Proof: First, observe that $W_{1} \subseteq W_{1}+W_{2}$. To see why this is so, let $v \in W_{1}$. Then,

$$
v=v+\mathbf{0}
$$

where $\mathbf{0} \in W_{2}$, since W_{2} is a subspace. Consequently, $v \in W_{1}+W_{2}$. Similarly, we can prove that $W_{2} \subseteq W_{1}+W_{2}$.

Finally, since $W_{1} \cap W_{2}$ is a subspace of both W_{1} and W_{2}, by Problem 5(b) in Assignment \#4, we obtain that $W_{1} \cap W_{2}, W_{1}$ and W_{2} are aall subspaces of $W_{1}+W_{2}$.
4. Let W_{1} and W_{2} be two subspaces of \mathbb{R}^{n} and define $W_{1}+W_{2}$ as in Problem 2 above. Suppose that $W_{1}=\operatorname{span}\left(S_{1}\right)$ and $W_{2}=\operatorname{span}\left(S_{2}\right)$, where $S_{1} \subseteq W_{1}$ and $S_{2} \subseteq W_{2}$. Prove that

$$
W_{1}+W_{2}=\operatorname{span}\left(S_{1} \cup S_{2}\right)
$$

Proof: Since $S_{1} \subseteq S_{1} \cup S_{2}$, it follows from Problem 1(a) in Assignment \#5 that

$$
\operatorname{span}\left(S_{1}\right) \subseteq \operatorname{span}\left(S_{1} \cup S_{2}\right)
$$

Thus,

$$
W_{1} \subseteq \operatorname{span}\left(S_{1} \cup S_{2}\right)
$$

Similarly,

$$
W_{2} \subseteq \operatorname{span}\left(S_{1} \cup S_{2}\right)
$$

Thus, since $\operatorname{span}\left(S_{1} \cup S_{2}\right)$ is a subspace of \mathbb{R}^{n} and hence closed under vector addition, it follows that

$$
v_{1}+v_{2} \in \operatorname{span}\left(S_{1} \cup S_{2}\right) \quad \text { for all } v_{1} \in W_{1} \text { and } v_{2} \in W_{2}
$$

that is,

$$
\begin{equation*}
W_{1}+W_{2} \subseteq \operatorname{span}\left(S_{1} \cup S_{2}\right) \tag{1}
\end{equation*}
$$

To show the reverse inclusion, we first show that

$$
\begin{equation*}
S_{1} \cup S_{2} \subseteq W_{1}+W_{2} \tag{2}
\end{equation*}
$$

To see why (2) is true, take $v \in S_{1} \cup S_{2}$; then, either $v \in S_{1}$ or $v \in S_{2}$. If $v \in S_{1}$, then, given that $S_{1} \subseteq W_{1}$,

$$
v=v+0 \in W_{1}+W_{2}
$$

On the other hand, if $v \in S_{2}$, then, given that $S_{2} \subseteq W_{2}$, we have that

$$
v=0+v \in W_{1}+W_{2} .
$$

In either case we see that $v \in S_{1} \cup S_{2}$ implies that $v \in W_{1}+W_{2}$, which implies

Now, It follows from (2) that

$$
\begin{equation*}
\operatorname{span}\left(S_{1} \cup S_{2}\right) \subseteq W_{1}+W_{2} \tag{3}
\end{equation*}
$$

since $\operatorname{span}\left(S_{1} \cup S_{2}\right)$ is the smallest subspace of \mathbb{R}^{n} which contains $S_{1} \cup S_{2}$. Combining (1) and (3) yields the result.
5. Let S_{1} and S_{2} be two linearly independent subsets of \mathbb{R}^{n}. When can we say that $S_{1} \cup S_{2}$ is linearly independent? Explain your reasoning.

Solution:

Claim: Suppose that S_{1} and S_{2} are linearly independent. Then, $S_{1} \cup S_{2}$ is linearly independent if $v \notin \operatorname{span}\left(\left(S_{1} \cup S_{2}\right) \backslash\{v\}\right)$ for all $v \in S_{1} \cup S_{2}$. This is, precisely, the definition of linear independence.

