Assignment \#9

Due on Wednesday, October 8, 2014
Read Section 2.8 on Maximal Linearly Independent Subsets, in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 2.9 on Bases, in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 1.6 on Bases and Dimension in Damiano and Little (pp. 47-55)

Background and Definitions

- (Definition of basis for a subspace of $\left.\mathbb{R}^{n}\right)$. Let W be a subspace of \mathbb{R}^{n}. A subset, B, of W is said to be a basis for W if and only if
(i) B is linearly independent, and
(ii) $W=\operatorname{span}(B)$.
- (Column space of a matrix). The column space of a matrix,

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \tag{1}\\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

denoted by C_{A}, is the span of the columns of A. That is,

$$
C_{A}=\operatorname{span}\left\{\left(\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right),\left(\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right), \ldots,\left(\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right)\right\} .
$$

Thus, C_{A} is a subspace of \mathbb{R}^{m}.

- (Null space of a matrix). The null space of the matrix A defined in (1), denoted by N_{A}, is the solution space of the homogenous linear system

$$
\left\{\begin{array}{ccc}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & = & 0 \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & = & 0 \\
\vdots & \vdots & \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & = & 0
\end{array}\right.
$$

Thus, N_{A} is a subspace of \mathbb{R}^{n}.

Do the following problems

1. Let

$$
W=\left\{\left.\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \in \mathbb{R}^{3} \right\rvert\, 2 x+3 y-z=0\right\} .
$$

Find a basis for W.
2. Let A denote the matrix

$$
\left(\begin{array}{rrrr}
1 & 3 & -1 & 0 \tag{2}\\
2 & 2 & 2 & 4 \\
1 & 0 & 2 & 3
\end{array}\right)
$$

Find a basis for the column space, C_{A}, of the matrix A.
3. Find a basis for the null space, N_{A}, of the matrix, A, defined in (2).
4. Given a subset, S, or \mathbb{R}^{n}, and $v \in S$, the expression $S \backslash\{v\}$ denotes the set obtained by removing the vector v from S.
A subset, S, of a subspace, W, of \mathbb{R}^{n} is said to be a minimal generating set for W iff
(i) $W=\operatorname{span}(S)$, and
(ii) for any v in S, the set $S \backslash\{v\}$ does not span W.

Prove that a minimal generating set for W must be linearly independent.
Suggestion: Argue by contradiction; that is, start out your argument assuming that S is a minimal generating set for W, but S is linearly dependent. Then, derive a contradiction.
5. Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a subset of n vectors in \mathbb{R}^{n}. Prove that if $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is linearly independent, then it must also span \mathbb{R}^{n}.

