Solutions to Assignment \#9

1. Let

$$
W=\left\{\left.\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \in \mathbb{R}^{3} \right\rvert\, 2 x+3 y-z=0\right\} .
$$

Find a basis for W.
Solution: W is the solution space of the homogeneous linear equation

$$
2 x+3 y-z=0
$$

Solving for z in terms of x and y, and setting these to be arbitrary parameters t and s, respectively, we get the solutions

$$
\begin{aligned}
& x=t \\
& y=s \\
& z=2 t+3 s,
\end{aligned}
$$

from which we get that

$$
W=\left\{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \in \mathbb{R}^{3} \left\lvert\,\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=t\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)+s\left(\begin{array}{l}
0 \\
1 \\
3
\end{array}\right)\right.\right\} .
$$

In other words,

$$
W=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
3
\end{array}\right)\right\} .
$$

Thus, the set

$$
B=\left\{\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
3
\end{array}\right)\right\}
$$

is a candidate for a basis for W. To show that B is a basis, it remains to show that it is linearly independent. So, consider the vector equation

$$
c_{1}\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)+c_{2}\left(\begin{array}{l}
0 \\
1 \\
3
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

which is equivalent to the system

$$
\begin{cases}c_{1} & =0 \\ c_{2} & =0 \\ 2 c_{1}+3 c_{2} & =0\end{cases}
$$

from which we read that $c_{1}=c_{2}=0$ is the only solution. Consequently, B is linearly independent.
We therefore conclude that B is a basis for W.
2. Let A denote the matrix

$$
\left(\begin{array}{rrrr}
1 & 3 & -1 & 0 \tag{1}\\
2 & 2 & 2 & 4 \\
1 & 0 & 2 & 3
\end{array}\right)
$$

Find a basis for the column space, C_{A}, of the matrix A.
Solution: C_{A} is the span of the columns of A :

$$
C_{A}=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right),\left(\begin{array}{l}
3 \\
2 \\
0
\end{array}\right),\left(\begin{array}{r}
-1 \\
2 \\
2
\end{array}\right),\left(\begin{array}{l}
0 \\
4 \\
3
\end{array}\right)\right\} .
$$

Denote the columns of A by v_{1}, v_{2}, v_{3} and v_{4}, respectively. To find a basis for C_{4}, we need to find a linearly independent subset of $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ which also spans C_{4}. In order to do this, we seek for nontrivial solutions to the vector equation:

$$
\begin{equation*}
c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}+c_{4} v_{4}=\mathbf{0} \tag{2}
\end{equation*}
$$

where $\mathbf{0}$ denotes the zero-vector in \mathbb{R}^{3}. This equation is equivalent to the the homogeneous system

$$
\begin{cases}c_{1}+3 c_{2}-c_{3} & =0 \tag{3}\\ 2 c_{1}+2 c_{2}+2 c_{3}+4 c_{4} & =0 \\ c_{1}+2 c_{3}+3 c_{4} & =0\end{cases}
$$

The augmented matrix of this system is:

$$
\begin{aligned}
& R_{1} \\
& R_{2} \\
& R_{3}
\end{aligned} \quad\left(\begin{array}{rrrr|r}
1 & 3 & -1 & 0 & 0 \\
2 & 2 & 2 & 4 & 0 \\
1 & 0 & 2 & 3 & 0
\end{array}\right)
$$

We can reduce this matrix to

$$
\left(\begin{array}{rrrr|r}
1 & 0 & 2 & 3 & 0 \\
0 & 1 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

where we have performed the elementary row operations $\frac{1}{2} R_{2} \rightarrow R_{2}$, $-R_{1}+R_{2} \rightarrow R_{2},-R_{1}+R_{3} \rightarrow R_{3},-\frac{1}{2} R_{2} \rightarrow R_{2}, 3 R_{2}+R_{3} \rightarrow R_{3}$ and $-3 R_{3}+R_{1} \rightarrow R_{1}$ in succession.
This yields the system

$$
\left\{\begin{align*}
c_{1}+2 c_{3}+3 c_{4} & =0 \tag{4}\\
c_{2}-c_{3}-c_{4} & =0
\end{align*}\right.
$$

which is equivalent to system (3). Solving for the leading variables in (4) yields the solutions

$$
\left\{\begin{array}{l}
c_{1}=2 t+3 s \tag{5}\\
c_{2}=-t-s \\
c_{3}=-t \\
c_{4}=-s
\end{array}\right.
$$

where t and s are arbitrary parameters. Taking $t=1$ and $s=0$ in (5) yields from (2) the linear relation

$$
2 v_{1}-v_{2}-v_{3}=\mathbf{0}
$$

which shows that $v_{3}=2 v_{1}-v_{2}$; that is, $v_{3} \in \operatorname{span}\left\{v_{1}, v_{2}\right\}$.
Similarly, taking $t=0$ and $s=1$ in (5) yields

$$
3 v_{1}-v_{2}+v_{4}=\mathbf{0}
$$

which shows that $v_{4}=-3 v_{1}+v_{2}$; that is, $v_{4} \in \operatorname{span}\left\{v_{1}, v_{2}\right\}$.
We then have that both v_{3} and v_{4} are in the span of $\left\{v_{1}, v_{2}\right\}$. Consequently,

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \subseteq \operatorname{span}\left\{v_{1}, v_{2}\right\}
$$

from which we get that

$$
\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \subseteq \operatorname{span}\left\{v_{1}, v_{2}\right\}
$$

since $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is the smallest subspace of \mathbb{R}^{3} which contains $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Combining this with

$$
\operatorname{span}\left\{v_{1}, v_{2}\right\} \subseteq \operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}
$$

we conclude that

$$
\operatorname{span}\left\{v_{1}, v_{2}\right\}=\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}
$$

that is $\left\{v_{1}, v_{2}\right\}$ spans W. Thus, we set $B=\left\{v_{1}, v_{2}\right\}$.
It remains to show that B is linearly independent. To prove this, consider the vector equation

$$
\begin{equation*}
c_{1} v_{1}+c_{2} v_{2}=\mathbf{0} \tag{6}
\end{equation*}
$$

which leads to the system

$$
\left\{\begin{aligned}
c_{1}+2 c_{2} & =0 \\
-c_{2} & =0 \\
-c_{1}+c_{2} & =0 \\
2 c_{1}-c_{2} & =0
\end{aligned}\right.
$$

which can be seen to have only the trivial solution: $c_{1}=c_{2}=0$. It then follows that the vector equation (6) has only the trivial solution, and therefore B is linearly independent. We therefore conclude that the set

$$
B=\left\{\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right),\left(\begin{array}{l}
3 \\
2 \\
0
\end{array}\right)\right\}
$$

is a basis for C_{A}.
3. Find a basis for the null space, N_{A}, of the matrix, A, defined in (1).

Solution: N_{A} is the solution space of the homogeneous system

$$
\begin{cases}c_{1}+3 c_{2}-c_{3} & =0 \tag{7}\\ 2 c_{1}+2 c_{2}+2 c_{3}+4 c_{4} & =0 \\ c_{1}+2 c_{3}+3 c_{4} & =0\end{cases}
$$

which is the same as system (3) in the previous problem. Therefore, system (7) is equivalent to the reduced system

$$
\left\{\begin{align*}
c_{1}+2 c_{3}+3 c_{4} & =0 \tag{8}\\
c_{2}-c_{3}-c_{4} & =0
\end{align*}\right.
$$

Hence, N_{A} is the same as the solution space of system (8), which is given by

$$
\left\{\begin{array}{l}
c_{1}=2 t+3 s \\
c_{2}=-t-s \\
c_{3}=-t \\
c_{4}=-s,
\end{array}\right.
$$

where t and s are arbitrary parameters. Thus,

$$
N_{A}=\left\{\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right) \in \mathbb{R}^{4} \left\lvert\,\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right)=t\left(\begin{array}{r}
2 \\
-1 \\
-1 \\
0
\end{array}\right)+s\left(\begin{array}{r}
3 \\
-1 \\
0 \\
-1
\end{array}\right)\right.\right\}
$$

or

$$
N_{A}=\operatorname{span}\left\{\left(\begin{array}{r}
2 \\
-1 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{r}
3 \\
-1 \\
0 \\
-1
\end{array}\right)\right\} .
$$

Set

$$
B=\left\{\left(\begin{array}{r}
2 \\
-1 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{r}
3 \\
-1 \\
0 \\
-1
\end{array}\right)\right\}
$$

Then, B spans N_{A} and is also linearly independent. Therefore, B is a basis for N_{A}.
4. Given a subset, S, or \mathbb{R}^{n}, and $v \in S$, the expression $S \backslash\{v\}$ denotes the set obtained by removing the vector v from S.
A subset, S, of a subspace, W, of \mathbb{R}^{n} is said to be a minimal generating set for W iff
(i) $W=\operatorname{span}(S)$, and
(ii) for any v in S, the set $S \backslash\{v\}$ does not span W.

Prove that a minimal generating set for W must be linearly independent.
Suggestion: Argue by contradiction; that is, start out your argument assuming that S is a minimal generating set for W, but S is linearly dependent. Then, derive a contradiction.

Proof: Assume that S is a subset of W which satisfies (i) and (ii) above. Suppose by way of contradiction that S is not linearly independent. Then, one of the vectors in S, call it v, is in the span of the other ones; that is,

$$
v \in \operatorname{span}(S \backslash\{v\})
$$

It then follows that

$$
S \subseteq \operatorname{span}(S \backslash\{v\})
$$

from which we get that

$$
\begin{equation*}
\operatorname{span}(S) \subseteq \operatorname{span}(S \backslash\{v\}) \tag{9}
\end{equation*}
$$

since $\operatorname{span}(S)$ is the smallest subspace of \mathbb{R}^{n} which contains S. On the other hand, since $S \backslash\{v\} \subseteq S$, we also get that

$$
\operatorname{span}(S \backslash\{v\}) \subseteq \operatorname{span}(S)
$$

Combining this with (9) we get that

$$
\operatorname{span}(S \backslash\{v\})=\operatorname{span}(S)
$$

Thus, since S satisfies (i),

$$
\operatorname{span}(S \backslash\{v\})=W
$$

But this contradicts (ii). We therefore conclude that S is linearly independent, which was to be shown.
5. Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a subset of n vectors in \mathbb{R}^{n}. Prove that if $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is linearly independent, then it must also span \mathbb{R}^{n}.

Proof: Assume that $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is linearly independent. Arguing by contradiction, suppose that $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ does not span \mathbb{R}^{n}. Then, there exists $v \in \mathbb{R}^{n}$ such that

$$
v \notin \operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} .
$$

Consequently, the set $\left\{v_{1}, v_{2}, \ldots, v_{n}, v\right\}$ is linearly independent. However, the set $\left\{v_{1}, v_{2}, \ldots, v_{n}, v\right\}$ contains $n+1$ vectors; therefore, it must be linearly dependent. We have therefore arrived at a contradiction. Hence, $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ must also span \mathbb{R}^{n}.

