Review Problems for Exam 1

1. Give a basis for the span of the following set of vectors in \mathbb{R}^{4}

$$
\left\{\left(\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right),\left(\begin{array}{c}
-2 \\
0 \\
3 \\
0
\end{array}\right),\left(\begin{array}{c}
1 \\
-3 \\
6 \\
-3
\end{array}\right),\left(\begin{array}{c}
1 \\
1 \\
-4 \\
1
\end{array}\right)\right\}
$$

2. Find a basis for the solution space of the system

$$
\left\{\begin{aligned}
x_{1}-x_{2}+x_{3}-x_{4} & =0 \\
2 x_{1}-x_{2}-2 x_{4} & =0 \\
-x_{1}+x_{3}+x_{4} & =0
\end{aligned}\right.
$$

and compute its dimension.
3. Prove that any set of four vectors in \mathbb{R}^{3} must be linearly dependent.
4. Let v and w denote vectors in \mathbb{R}^{n}.
(a) Show that if the set $\{v, w\}$ is a linearly independent subset of \mathbb{R}^{n} if and only if the set $\{v+w, v-w\}$ is linearly independent.
(b) Show that $\operatorname{span}\{v, w\}=\operatorname{span}\{v+w, v-w\}$.
5. Let $\{u, v, w\}$ be a linearly independent subset of \mathbb{R}^{n}. Show that the set

$$
\{u+v, u+w, v+w\}
$$

is linearly independent.
6. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be a linearly independent subset of \mathbb{R}^{n}. Suppose there exists $v \in \mathbb{R}^{n}$ such that $v \notin \operatorname{span}(S)$. Show that the set $S \cup\{v\}$ is linearly independent.
7. Let S denote a nonempty subset of \mathbb{R}^{n}. Assume that there exists $v \in S$ such that $v \in \operatorname{span}(S \backslash\{v\})$. Show that $\operatorname{span}(S \backslash\{v\})=\operatorname{span}(S)$.
8. Let S_{1} and S_{2} be subsets of \mathbb{R}^{n}. Suppose that $S_{1} \cup S_{2}$ is linearly independent and that $S_{1} \cap S_{2}=\emptyset$. Show that $\operatorname{span}\left(S_{1}\right) \cap \operatorname{span}\left(S_{2}\right)=\{0\}$.
9. Let J and H be planes in \mathbb{R}^{3} given by
$J=\left\{\left.\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \right\rvert\, 2 x+3 y-6 z=0\right\} \quad$ and $\quad H=\left\{\left.\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \right\rvert\, x-2 y+z=0\right\}$.
(a) Give bases for J and H and compute their dimensions.
(b) Give a basis for the subspace $J \cap H$ and compute $\operatorname{dim}(J \cap H)$.

10 . Let W be a subspace of \mathbb{R}^{n}.
(a) Prove that if $v \in W$ and $v \neq \mathbf{0}$, then $r v=s v$ implies that $r=s$, where r and s are scalars.
(b) Prove that if W has more than one element, then W has infinitely many elements.
11. Let W be a subspace of \mathbb{R}^{n} and S_{1} and S_{2} be subsets of W.
(a) Show that $\operatorname{span}\left(S_{1} \cap S_{2}\right) \subseteq \operatorname{span}\left(S_{1}\right) \cap \operatorname{span}\left(S_{2}\right)$.
(b) Give an example in which $\operatorname{span}\left(S_{1} \cap S_{2}\right) \neq \operatorname{span}\left(S_{1}\right) \cap \operatorname{span}\left(S_{2}\right)$.
12. Let W be a subspace of \mathbb{R}^{n} of dimension k, where $k<n$. Let $\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ denote a basis for W.
Show that there exist vectors $v_{1}, v_{2}, \ldots, v_{\ell}$ in \mathbb{R}^{n} such that the set

$$
\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{1}, v_{2}, \ldots, v_{\ell}\right\}
$$

is a basis for \mathbb{R}^{n}. What is ℓ in terms of n and k ?
13. Let W_{1} and W_{2} be two subspaces of \mathbb{R}^{n}. We write $W_{1} \oplus W_{2}$ for the subspace $W_{1}+W_{2}$ for the special case in which $W_{1} \cap W_{2}=\{\mathbf{0}\}$. Show that every vector $v \in W_{1} \oplus W_{2}$ can be written in the form $v=v_{1}+v_{2}$, where $v_{1} \in W_{1}$ and $v_{2} \in W_{2}$, in one and only one way; that is, if $v=u_{1}+u_{2}$, where $u_{1} \in W_{1}$ and $u_{2} \in W_{2}$, then $u_{1}=v_{1}$ and $u_{2}=v_{2}$.
14. Let W be a k-dimensional subspace of \mathbb{R}^{n}, and let $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be a subset of W.
(a) Show that if $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is linearly independent, then it must span W.
(b) Show that if $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ span W, then it is linearly independent.
15. Let A denote the $n \times k$ matrix

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 k} \\
a_{21} & a_{22} & \cdots & a_{2 k} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n k}
\end{array}\right)
$$

and denote the columns of A by $w_{1}, w_{2}, \ldots, w_{k}$, respectively.
(a) Show that the set $\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ is a linearly independent subset of \mathbb{R}^{n} if and only if the homogeneous system

$$
\left\{\begin{array}{ccc}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 k} x_{k} & = & 0 \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 k} x_{k} & = & 0 \\
\vdots & \vdots & \vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n k} x_{k} & = & 0
\end{array}\right.
$$

has only the trivial solution.
(b) Let $v=\left(\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right)$ be any vector in \mathbb{R}^{n}.

Show that $v \in \operatorname{span}\left(\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}\right)$ if and only if the system of linear equations

$$
\left\{\begin{array}{ccc}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 k} x_{k} & = & b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 k} x_{k} & = & b_{2} \\
\vdots & \vdots & \vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n k} x_{k} & = & b_{n}
\end{array}\right.
$$

has a solution.

