Review Problems for Exam 1

1. Give a basis for the span of the following set of vectors in \mathbb{R}^4

$$\left\{ \begin{pmatrix} 1\\-1\\1\\-1 \end{pmatrix}, \begin{pmatrix} -2\\0\\3\\0 \end{pmatrix}, \begin{pmatrix} 1\\-3\\6\\-3 \end{pmatrix}, \begin{pmatrix} 1\\1\\-4\\1 \end{pmatrix} \right\}.$$

2. Find a basis for the solution space of the system

$$\begin{cases} x_1 - x_2 + x_3 - x_4 &= 0\\ 2x_1 - x_2 &- 2x_4 &= 0\\ -x_1 &+ x_3 + x_4 &= 0, \end{cases}$$

and compute its dimension.

- 3. Prove that any set of four vectors in \mathbb{R}^3 must be linearly dependent.
- 4. Let v and w denote vectors in \mathbb{R}^n .
 - (a) Show that if the set $\{v, w\}$ is a linearly independent subset of \mathbb{R}^n if and only if the set $\{v + w, v w\}$ is linearly independent.
 - (b) Show that $\operatorname{span}\{v, w\} = \operatorname{span}\{v + w, v w\}.$
- 5. Let $\{u, v, w\}$ be a linearly independent subset of \mathbb{R}^n . Show that the set

$$\{u+v, u+w, v+w\}$$

is linearly independent.

- 6. Let $S = \{v_1, v_2, \ldots, v_k\}$ be a linearly independent subset of \mathbb{R}^n . Suppose there exists $v \in \mathbb{R}^n$ such that $v \notin \operatorname{span}(S)$. Show that the set $S \cup \{v\}$ is linearly independent.
- 7. Let S denote a nonempty subset of \mathbb{R}^n . Assume that there exists $v \in S$ such that $v \in \operatorname{span}(S \setminus \{v\})$. Show that $\operatorname{span}(S \setminus \{v\}) = \operatorname{span}(S)$.
- 8. Let S_1 and S_2 be subsets of \mathbb{R}^n . Suppose that $S_1 \cup S_2$ is linearly independent and that $S_1 \cap S_2 = \emptyset$. Show that $\operatorname{span}(S_1) \cap \operatorname{span}(S_2) = \{0\}$.

$$J = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid 2x + 3y - 6z = 0 \right\} \quad \text{and} \quad H = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid x - 2y + z = 0 \right\}.$$

- (a) Give bases for J and H and compute their dimensions.
- (b) Give a basis for the subspace $J \cap H$ and compute dim $(J \cap H)$.
- 10. Let W be a subspace of \mathbb{R}^n .
 - (a) Prove that if $v \in W$ and $v \neq 0$, then rv = sv implies that r = s, where r and s are scalars.
 - (b) Prove that if W has more than one element, then W has infinitely many elements.
- 11. Let W be a subspace of \mathbb{R}^n and S_1 and S_2 be subsets of W.
 - (a) Show that $\operatorname{span}(S_1 \cap S_2) \subseteq \operatorname{span}(S_1) \cap \operatorname{span}(S_2)$.
 - (b) Give an example in which $\operatorname{span}(S_1 \cap S_2) \neq \operatorname{span}(S_1) \cap \operatorname{span}(S_2)$.
- 12. Let W be a subspace of \mathbb{R}^n of dimension k, where k < n. Let $\{w_1, w_2, \ldots, w_k\}$ denote a basis for W.

Show that there exist vectors v_1, v_2, \ldots, v_ℓ in \mathbb{R}^n such that the set

$$\{w_1, w_2, \ldots, w_k, v_1, v_2, \ldots, v_\ell\}$$

is a basis for \mathbb{R}^n . What is ℓ in terms of n and k?

- 13. Let W_1 and W_2 be two subspaces of \mathbb{R}^n . We write $W_1 \oplus W_2$ for the subspace $W_1 + W_2$ for the special case in which $W_1 \cap W_2 = \{\mathbf{0}\}$. Show that every vector $v \in W_1 \oplus W_2$ can be written in the form $v = v_1 + v_2$, where $v_1 \in W_1$ and $v_2 \in W_2$, in one and only one way; that is, if $v = u_1 + u_2$, where $u_1 \in W_1$ and $u_2 \in W_2$, then $u_1 = v_1$ and $u_2 = v_2$.
- 14. Let W be a k-dimensional subspace of \mathbb{R}^n , and let $\{v_1, v_2, \ldots, v_k\}$ be a subset of W.
 - (a) Show that if $\{v_1, v_2, \ldots, v_k\}$ is linearly independent, then it must span W.
 - (b) Show that if $\{v_1, v_2, \ldots, v_k\}$ span W, then it is linearly independent.

Math 60. Rumbos

15. Let A denote the $n \times k$ matrix

 $\left(\begin{array}{ccccc} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nk} \end{array}\right),$

and denote the columns of A by w_1, w_2, \ldots, w_k , respectively.

(a) Show that the set $\{w_1, w_2, \ldots, w_k\}$ is a linearly independent subset of \mathbb{R}^n if and only if the homogeneous system

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1k}x_k &= 0\\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2k}x_k &= 0\\ \vdots &\vdots &\vdots\\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nk}x_k &= 0 \end{cases}$$

has only the trivial solution.

(b) Let
$$v = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$
 be any vector in \mathbb{R}^n .

Show that $v \in \text{span}(\{w_1, w_2, \dots, w_k\})$ if and only if the system of linear equations

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1k}x_k = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2k}x_k = b_2 \\ \vdots & \vdots & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nk}x_k = b_n \end{cases}$$

has a solution.