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Solutions to Review Problems for Exam 1

1. Give a basis for the span of the following set of vectors in R4


1
−1

1
−1

 ,


−2

0
3
0

 ,


1
−3

6
−3

 ,


1
1
−4

1


 .

Solution: Denote the vectors in the set


1
−1

1
−1

 ,


−2

0
3
0

 ,


1
−3

6
−3

 ,


1
1
−4

1




by v1, v2, v3 and v4, respectively. We look for a linear vector relation
of the form

c1v1 + c2v2 + c3v3 + c4v4 = 0. (1)

This leads to the system
c1 − 2c2 + c3 + c4 = 0
−c1 − 3c3 + c4 = 0
c1 + 3c2 + 6c3 − 4c4 = 0
−c1 − 3c3 + c4 = 0.

(2)

The augmented matrix of this system is:

R1

R2

R3

R4


1 −2 1 1 | 0
−1 0 −3 1 | 0

1 3 6 −4 | 0
−1 0 −3 1 | 0

 .

We can reduce this matrix to
1 0 3 −1 | 0
0 1 1 −1 | 0
0 0 0 0 | 0
0 0 0 0 | 0

 ,

which is in reduced row–echelon form. We therefore get that the
system in (2) is equivalent to the system{

c1 + 3c3 − c4 = 0
c2 + c3 − c4 = 0.

(3)
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Solving for the leading variables in (3) yields the solutions
c1 = 3t + s
c2 = t + s
c3 = −t
c4 = s,

(4)

where t and s are arbitrary parameters. Taking t = 1 and s = 0 in
(4) yields from (1) the linear relation

3v1 + v2 − v3 = 0,

which shows that v3 = −3v1 − v2; that is, v3 ∈ span{v1, v2}.
Similarly, taking t = 0 and s = 1 in (4) yields

v1 + v2 + v4 = 0,

which shows that v4 = −v1 − v2; that is, v4 ∈ span{v1, v2}.
We then have that both v3 and v4 are in the span of {v1, v2}. Conse-
quently,

{v1, v2, v3, v4} ⊆ span{v1, v2},
from which we get that

span{v1, v2, v3, v4} ⊆ span{v1, v2},

since span{v1, v2, v3, v4} is the smallest subspace of R3 which contains
{v1, v2, v3, v4}. Combining this with

span{v1, v2} ⊆ span{v1, v2, v3, v4},

we conclude that

span{v1, v2} = span{v1, v2, v3, v4};

that is, {v1, v2} spans span{v1, v2, v3, v4}.
To see that {v1, v2} is linearly independent, observe that v1 and v2
are not multiples of each other. We therefore conclude that {v1, v2}
is a basis for span{v1, v2, v3, v4}. �

2. Find a basis for the solution space of the system
x1 − x2 + x3 − x4 = 0
2x1 − x2 − 2x4 = 0
−x1 + x3 + x4 = 0,

(5)

and compute its dimension.



Math 60. Rumbos Fall 2014 3

Solution: We first find the solution space, W , of the system. In
order to do this, we reduce the augmented matrix of this system,

R1

R2

R3

 1 −1 1 −1 | 0
2 −1 0 −2 | 0
−1 0 1 1 | 0

 ,

to its reduced row–echelon form: 1 0 −1 −1 | 0
0 1 −2 0 | 0
0 0 0 0 | 0

 .

Consequently, the system in (5) is equivalent to the system{
x1 − x3 − x4 = 0

x2 − 2x3 = 0.
(6)

Solving for the leading variables in the system in (6) we obtain the
solutions 

x1 = t + s
x2 = 2t
x3 = t
x4 = s,

where t and s are arbitrary parameters. I then follows that the solu-
tion space of system (6) is

W = span




1
2
1
0

 ,


1
0
0
1


 .

Hence 


1
2
1
0

 ,


1
0
0
1




is a basis for W and therefore dim(W ) = 2. �

3. Prove that any set of four vectors in R3 must be linearly dependent.
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Proof: Let v1 , v2, v3 and v4 denote four vectors in R3 and write

v1 =

 a11
a21
a31

 , v2 =

 a12
a22
a32

 , v3 =

 a13
a23
a33

 and v4 =

 a14
a24
a34

 .

Consider the vector equation

c1v1 + c2v2 + c3v3 + c4v4,= 0. (7)

This equation translates into the homogeneous system
a11c1 + a12c2 + a13c3 + a14c4 = 0
a21c1 + a22c2 + a23c3 + a24c4 = 0
a31c1 + a32c2 + a33c3 + a34c4 = 0,

(8)

of 3 linear equations in 4 unknowns. It then follows from the Fundamental
Theorem for Homogeneous Linear Systems that system (8) has infinitely many
solutions. Consequently, the vector equation in (7) has a nontrivial solution,
and therefore the set {v1, v2, v3, v4} is linearly dependent.

4. Let v and w denote vectors in Rn.

(a) Show that if the set {v, w} is a linearly independent subset of Rn if and
only if the set {v + w, v − w} is linearly independent.

(b) Show that span{v, w} = span{v + w, v − w}.

Solution:

(a) First we prove that if {v, w} is a linearly independent subset of
Rn, then so is the set {v + w, v − w}.

Proof: Assume that {v, w} is a linearly independent and consider
the vector equation

c1(v + w) + c2(v − w) = 0. (9)

Applying the distributive and associative properties, the equation
in (9) turns into

(c1 + c2)v + (c1 − c2)w = 0. (10)

It follows from (10) and the linear independence of {v, w} that{
c1 + c2 = 0
c1 − c2 = 0.

(11)
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The system in (11) has only the trivial solution: c2 = c1 = 0.
Hence, the vector equation in (9) has only the trivial solution
and therefore the set {v + w, v − w} is linearly independent.

Next, we prove the converse: If {v + w, v − w} is linearly inde-
pendent, then {v, w} is a linearly independent.

Proof: Assume that {v +w, v−w} is a linearly independent and
assume, by way of contradiction, that the set {v, w} is linearly
dependent. It then follows that

w = cv, (12)

for some scalar c.
We first see that the scalar, c, in (12) cannot be 1; for, if c = 1,
v−w = 0, and {v+w, v−w} would be linearly dependent, which
contradicts the assumption of linear independence of {v +w, v−
w}. We then have that c 6= 1 in (12).
It follows from (12) that

v + w = (1 + c)v (13)

and
v − w = (1− c)v. (14)

Rewrite (13) as

v + w =
1 + c

1− c
(1− c)v,

and use (14) to get that

v + w =
1 + c

1− c
(v − w),

which shows that the set {v+w, v−w} is linearly dependent. This
is a contradiction. Hence, {v, w} is linearly independent.

(b) In order to prove that span{v, w} = span{v + w, v − w}, we
establish the following inclusions:

(i) span{v, w} ⊆ span{v + w, v − w}, and

(ii) span{v + w, v − w} ⊆ span{v, w}.
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Proof of (i): First observe that

(v + w) + (v − w) = 2v,

so that

v =
1

2
(v + w) +

1

2
(v − w);

consequently,
v ∈ span{v + w, v − w}. (15)

Similarly, since

w =
1

2
(v + w)− 1

2
(v − w),

it follows that
w ∈ span{v + w, v − w}. (16)

Combining (15) and (16) we see that

{v, w} ⊆ span{v + w, v − w},

which implies that

span{v, w} ⊆ span{v + w, v − w},

since span{v, w} is the smallest subspace of Rn that contains the
set {v, w}. We have therefore established (i).

Proof of (ii): Note that

v + w ∈ span{v, w} and v − w ∈ span{v, w},

so that
{v + w, v − w} ⊆ span{v, w}.

Hence,
span{v + w, v − w} ⊆ span{v, w},

since span{v + w, v − w} is the smallest subspace of Rn that
contains {v + w, v − w} . This concludes the proof of (ii).

�
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5. Let {u, v, w} be a linearly independent subset of Rn. Show that the set

{u + v, u + w, v + w}

is linearly independent.

Solution: Assume that {u, v, w} be a linearly independent and con-
sider the vector equation

c1(u + v) + c2(u + w) + c3(v + w) = 0. (17)

Next, use the distributive, associative and commutative properties of
the vector space operations to rewrite (17) as

(c1 + c2)u + (c1 + c3)v + (c2 + c3)w = 0. (18)

It follows from (18) and the linear independence of the set {u, v, w}
that 

c1 + c2 = 0
c1 + c3 = 0
c2 + c3 = 0.

(19)

To solve the system in (19), use Gaussian eliminations on the aug-
mented matrix  1 1 0 | 0

1 0 1 | 0
0 1 1 | 0


to obtain  1 0 0 | 0

0 1 0 | 0
0 0 1 | 0

 .

It then follows that the system (19) has only the trivial solution

c1 = c2 = c2 = 0,

which implies that the set

{u + v, u + w, v + w}

is linearly independent. �
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6. Let S = {v1, v2, . . . , vk} be a linearly independent subset of Rn. Suppose there
exists v ∈ Rn such that v 6∈ span(S). Show that the set S ∪ {v} is linearly
independent.

Proof: Assume that S = {v1, v2, . . . , vk} is a linearly independent subset of Rn

and that v ∈ Rn is such that v 6∈ span(S). Suppose that

c1v1 + c2v2 + · · ·+ ckvk + cv = 0. (20)

We first see that c in (20) must be 0; otherwise, c 6= 0 and we can solve for v in
(20) to get that

v = −c1
c
v1 −

c2
c
v2 − · · · −

ck
c
vk,

which shows that v ∈ span(S); this contradicts the assumption that v 6∈
span(S). Hence, c = 0 and so we obtain from (20) that

c1v1 + c2v2 + · · ·+ ckvk = 0. (21)

It follows from (21) and the assumption that S is linearly independent that

c1 = c2 = . . . = ck = 0.

We have therefore shown that (20) implies that

c1 = c2 = . . . = ck = c = 0.

Hence, the set S ∪ {v} is linearly independent.

7. Let S denote a nonempty subset of Rn. Assume that there exists v ∈ S such
that v ∈ span(S\{v}). Show that

span(S\{v}) = span(S).

Proof: Let S ⊆ Rn and assume that there exists v ∈ S such that v ∈ span(S\{v}).
First observe that S\{v} ⊆ S, so that

S\{v} ⊆ span(S).

Thus,
span(S\{v}) ⊆ span(S) (22)

because span(S\{v}) is the smallest subspace of Rn that contains S\{v}.
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Next, let w ∈ span(S). Then,

w = c1w2 + c2w2 + · · ·+ ckwk + cv, (23)

where
wi ∈ S\{v}, for i = 1, 2, . . . , k. (24)

Next, use the assumption that v ∈ span(S\{v}) to write

v = d1v2 + d2v2 + · · ·+ d`v`, (25)

where
vj ∈ S\{v}, for j = 1, 2, . . . , `. (26)

It then follows from (23) and (25) that

w = c1w2 + c2w2 + · · ·+ ckwk + c(d1v2 + d2v2 + · · ·+ d`v`),

or
w = c1w2 + c2w2 + · · ·+ ckwk + cd1v2 + cd2v2 + · · ·+ cd`v`. (27)

Consequently, in view of (24) and (26), we obtain from (27) that

w ∈ span(S\{v}).

We have therefore shown that

span(S) ⊆ span(S\{v}). (28)

Combining (22) and (28) yields what we were asked to prove.

8. Let S1 and S2 be subsets of Rn. Suppose that S1 ∪ S2 is linearly independent
and that S1 ∩ S2 = ∅. Show that span(S1) ∩ span(S2) = {0}.

Solution: Assume that S1 ∩ S2 is linearly independent and that
S1 ∩ S2 = ∅.
Let v ∈ span(S1) ∩ span(S2); then,

v ∈ span(S1) and v ∈ span(S1).

Thus, there exist w1, w2, . . . , wk in S1 and v1, v2, . . . , v` in S2 such that

v = c1w1 + c2w2 + · · ·+ ckwk (29)
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and
v = d1v1 + d2v2 + · · ·+ d`v`, (30)

for scalars c1, c2, . . . , ck and d1, d2, . . . , d`. It follows from (29) and
(30) that

c1w1 + c2w2 + · · ·+ ckwk = d1v1 + d2v2 + · · ·+ d`v`,

from which we get

c1w1+c2w2+ · · ·+ckwk+(−d1)v1+(−d2)v2+ · · ·+(−d`)v` = 0, (31)

where
w1, w2, . . . , wk, v1, v2, . . . , v` ∈ S1 ∪ S2.

It then follows from (31) and the assumptions that S1 ∩ S2 = ∅ and
S1 ∪ S2 is linearly independent that

c1 = c2 = · · · = ck = d1 = d2 = · · · = d` = 0. (32)

It then follows from (29) (or (30) and (32) that v = 0. Hence,
span(S1) ∩ span(S2) = {0}. �

9. Let J and H be planes in R3 given by

J =


x
y
z

 ∣∣∣ 2x + 3y − 6z = 0

 and H =


x
y
z

 ∣∣∣ x− 2y + z = 0

 .

(a) Give bases for J and H and compute their dimensions.

Solution: To find a basis for J , we solve the equation

2x + 3y − 6z = 0

to get the solution space J = span


3

0
1

 ,

0
2
1

 . Thus, the

set 
3

0
1

 ,

0
2
1


is a basis for J and so dim(J) = 2.
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Similarly, for H, we solve

x− 2y + z = 0

and obtain that 
 2

1
0

 ,

 1
0
−1


is a basis for H; thus, dim(H) = 2. �

(b) Give a basis for the subspace J ∩H and compute dim(J ∩H).

Solution: A vector

x
y
z

 is in the intersection of J and H if it

is a solution to the system of equations{
2x + 3y − 6z = 0
x− 2y + z = 0.

(33)

Thus, to find J ∩ H, we may use elementary row operations on
the augmented matrix

R1

R2

(
2 3 −6 | 0
1 −2 1 | 0

)
to obtain the reduced matrix(

1 0 −9/7 | 0
0 1 −8/7 | 0

)
.

Thus, the system in (33) is equivalent to{
x − 9

7
z = 0

y − 8
7
z = 0,

(34)

Solving for the leading variables in system (34) and setting z = 7t,
where t is an arbitrary parameter, wee obtain that

J ∩H = span


 9

8
7

 .

Thus, the set 
 9

8
7


is a basis for J ∩H and, therefore, dim(J ∩H) = 1. �
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10. Let W be a subspace of Rn.

(a) Prove that if v ∈ W and v 6= 0, then rv = sv implies that r = s, where r
and s are scalars.

Proof: Suppose that v ∈ W , where W is a subspace of Rn, and that v 6= 0.
Suppose also that

rv = sv (35)

for some scalars r and s. Add −sv on both sides of the vector equation in
(35) and apply the distributive property to obtain

(r − s)v = 0. (36)

It follows from (36) and the assumption v 6= 0, that

r − s = 0

and therefore r = s, which was to be shown.

(b) Prove that if W has more than one element, then W has infinitely many
elements.

Proof: Since W has at least two elements, there has to be a vector, v, in W
such that v 6= 0. Now, for any t ∈ R, tv ∈ W because W is closed under
scalar multiplication. By part (a), t1v 6= t2v for any t1 6= t2. Consequently,
W contains infinitely many vectors.

11. Let W be a subspace of Rn and S1 and S2 be subsets of W .

(a) Show that span(S1 ∩ S2) ⊆ span(S1) ∩ span(S2).

Proof: First observe that S1 ∩ S2 ⊆ S1 and S1 ∩ S2 ⊆ S2. Consequently,

span(S1 ∩ S2) ⊆ span(S1) and span(S1 ∩ S2) ⊆ span(S2).

It then follows that

span(S1 ∩ S2) ⊆ span(S1) ∩ span(S2),

which was to be shown.

(b) Give an example in which span(S1 ∩ S2) 6= span(S1) ∩ span(S2).
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Solution: Let S1 =

{(
1
0

)}
and S2 =

{(
−1

0

)}
. Then, S1 ∩

S2 = ∅ so that span(S1 ∩ S2) = {0}, where 0 denotes the zero
vector in R2.
On the other hand,

span(S1) = span(S2)

because

(
−1

0

)
= −

(
1
0

)
. Hence,

span(S1) ∩ span(S2) =

{(
t
0

)
∈ R2

∣∣∣ t ∈ R
}
6= {0}.

�

12. Let W be a subspace of Rn of dimension k, where k < n. Let {w1, w2, . . . , wk}
denote a basis for W .

Show that there exist vectors v1, v2, . . . , v` in Rn such that the set

{w1, w2, . . . , wk, v1, v2, . . . , v`}

is a basis for Rn. What is ` in terms of n and k?

Proof: Let W be a subspace of Rn and let {w1, w2, . . . , wk} be a basis for
W . Assume that k < n. Then, span({w1, w2, . . . , wk}) = Rn; otherwise
{w1, w2, . . . , wk} would be a basis for Rn, and therefore dim(Rn) = k, which
is impossible since we are assuming that k < n. Thus, there exists v1 ∈ Rn such
that v2 6∈ span({w1, w2, . . . , wk}). It then follows from the result of Problem 6
in this review sheet that the set

{w1, w2, . . . , wk, v1}

is linearly independent.

We consider two possibilities: Either (i) span({w1, w2, . . . , wk, v1}) = Rn, or
(ii) span({w1, w2, . . . , wk, v1}) 6= Rn.

If span({w1, w2, . . . , wk, v1}) = Rn, then {w1, w2, . . . , wk, v1} is a basis for Rn

and n = k + 1. If not, there exists v2 ∈ Rn such that

v2 6∈ span({w1, w2, . . . , wk, v1}).
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It then follows from the result of Problem 6 that the set

{w1, w2, . . . , wk, v1, v2}

is linearly independent.

Again, we consider two cases: Either (i) span({w1, w2, . . . , wk, v1, v2}) = Rn, or
(ii) span({w1, w2, . . . , wk, v1, v2}) 6= Rn.

If span({w1, w2, . . . , wk, v1, v2}) = Rn, then {w1, w2, . . . , wk, v1, v2} is a basis for
Rn and n = k + 2. If not, there exists v3 ∈ Rn such that

v3 6∈ span({w1, w2, . . . , wk, v1, v2}).

We continue in this fashion until we get vectors v1, v2, . . . , v` in Rn such that
the set

{w1, w2, . . . , wk, v1, v2, . . . , v`} is linearly independent (37)

and
span({w1, w2, . . . , wk, v1, v2, . . . , v`}) = Rn. (38)

It follows from (37) and (38) that {w1, w2, . . . , wk, v1, v2, . . . , v`} is a basis for
Rn and therefore k + ` = n, from which we get that ` = n− k.

13. Let W1 and W2 be two subspaces of Rn. We write W1 ⊕W2 for the subspace
W1 + W2 for the special case in which V = W1 ∩W2 = {0}. Show that every
vector v ∈ W1⊕W2 can be written in the form v = v1 + v2, where v1 ∈ W1 and
v2 ∈ W2, in one and only one way; that is, if v = u1 + u2, where u1 ∈ W1 and
u2 ∈ W2, then u1 = v1 and u2 = v2.

Proof: Suppose that W1 and W2 are two subspaces of Rn which have only the
zero vector in common; that is, W1∩W2 = {0}. Let v be any vector in W1+W2.
Then, v = v1 + v2, where v1 ∈ W1 and v2 ∈ W2. Suppose that v can also be
written as v = u1 + u2, where u1 ∈ W1 and u2 ∈ W2. Then,

v1 + v2 = u1 + u2,

from which we get that
v1 − u1 = v2 − u2, (39)

where v1 − u1 ∈ W1 and v2 − u2 ∈ W2 since W1 and W2 are subspaces of Rn.
It also follows from (39) that v1 − u1 ∈ W2. Thus, v1 − u1 ∈ W1 ∩W2 = {0},
which implies that

v1 − u1 = 0,
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or
v1 = u1.

Similarly, we get that v2 = u2.

14. Let W be a k–dimensional subspace of Rn, and let {v1, v2, . . . , vk} be a subset
of W .

(a) Show that if {v1, v2, . . . , vk} is linearly independent, then it must span W .

Proof: Assume that W is a k–dimensional subspace of Rn and let {w1, w2, . . . , wk}
be a basis for W .

Suppose that {v1, v2, . . . , vk} is linearly a independent subset of W . We
show that {v1, v2, . . . , vk} spans W .

Arguing by contradiction, suppose that span({v1, v2, . . . , vk}) 6= W . Then,
there exists v ∈ W such that v 6∈ span({v1, v2, . . . , vk}). It then follows by
the result of Problem 6 that the set

{v1, v2, . . . , vk, v}

is linearly a independent subset of W . However, since {v1, v2, . . . , vk, v}
has k + 1 elements and W has dimension k, {v1, v2, . . . , vk, v} must be
linearly dependent. We have therefore arrived at a contradiction. Hence,
{v1, v2, . . . , vk} must also span W .

(b) Show that if {v1, v2, . . . , vk} span W , then it is linearly independent.

Proof: Assume that W is a k–dimensional subspace of Rn and let {w1, w2, . . . , wk}
be a basis for W .

Suppose that span({v1, v2, . . . , vk}) = W . We show that {v1, v2, . . . , vk} is
linearly a independent.

Arguing by contradiction, suppose that {v1, v2, . . . , vk} is linearly a depen-
dent. Then, by reordering the vectors if necessary, we may assume that
vk ∈ span({v1, v2, . . . , vk−1}). It then follows by the result of Problem 7 in
this review sheet that

span({v1, v2, . . . , vk−1}) = span({v1, v2, . . . , vk}) = W.

Either {v1, v2, . . . , vk−1} is linearly independent, or not. If {v1, v2, . . . , vk−1}
is linearly dependent, we may proceed as above to conclude that

vk−1 ∈ span({v1, v2, . . . , vk−2}),
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(where, if necessary, the vectors have been rearranged); so that,

span({v1, v2, . . . , vk−2}) = span({v1, v2, . . . , vk−1}) = W.

Proceeding in this fashion we get to a subset of {v1, v2, . . . , vk}; namely,
{v1, v2, . . . , v`}, where ` < k, that is linearly independent and also spans
W . In other words, {v1, v2, . . . , v`} is a basis for W . Hence, dim(W ) =
` < k = dim(W ); this is a contradiction. Therefore, {v1, v2, . . . , vk} must
be linearly a independent.

15. Let A denote the n× k matrix
a11 a12 · · · a1k
a21 a22 · · · a2k
...

...
...

...
an1 an2 · · · ank

 ,

and denote the columns of A by w1, w2, . . . , wk, respectively.

(a) Show that the set {w1, w2, . . . , wk} is a linearly independent subset of Rn

if and only if the homogeneous system
a11x1 + a12x2 + · · ·+ a1kxk = 0
a21x1 + a22x2 + · · ·+ a2kxk = 0

...
...

...
an1x1 + an2x2 + · · ·+ ankxk = 0

(40)

has only the trivial solution.

Proof: Note that (c1, c2, . . . , ck) is a solution to the vector equation

c1w1 + c2w2 + · · ·+ ckwk = 0. (41)

if and only if 
a11c1 + a12c2 + · · ·+ a1kck = 0
a21c1 + a22c2 + · · ·+ a2kck = 0

...
...

...
an1c1 + an2c2 + · · ·+ ankck = 0.

Hence, (c1, c2, . . . , ck) is a solution of the vector equation in (41) if and
only if (c1, c2, . . . , ck) is a solution of the system in (40). Consequently, the
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vector equation in (41) has only the trivial solution if and only if the system
(40) has only the trivial solution. Therefore, the set {w1, w2, . . . , wk} is a
linearly independent if and only of the system in (40) has only the trivial
solution.

(b) Let v =


b1
b2
...
bn

 be any vector in Rn.

Show that v ∈ span({w1, w2, . . . , wk}) if and only if the system of linear
equations 

a11x1 + a12x2 + · · ·+ a1kxk = b1
a21x1 + a22x2 + · · ·+ a2kxk = b2

...
...

...
an1x1 + an2x2 + · · ·+ ankxk = bn

(42)

has a solution.

Proof: v ∈ span({w1, w2, . . . , wk}) if and only if
b1
b2
...
bn

 = c1


a11
a21
...

an1

+ c2


a12
a22
...

an2

+ · · ·+ ck


a1k
a2k
...

ank

 ,

for some scalars c1, c2, . . . , ck. Thus, v ∈ span({w1, w2, . . . , wk}) if and only
if there exist scalars c1, 22, . . . , ck such that

a11c1 + a12c2 + · · ·+ a1kck = b1
a21c1 + a22c2 + · · ·+ a2kck = b2

...
...

...
an1c1 + an2c2 + · · ·+ ankck = bn

Hence, v ∈ span({w1, w2, . . . , wk}) if and only if the system in (42) has a
solution.


