Solutions to Exam 1

- 1. Answer the following questions as thoroughly as possible.
 - (a) Let S denote a nonempty subset of ℝⁿ. Give a precise definition of span(S).
 Answer: span(S) is the set of all finite linear combinations of vectors in S.

Alternative Answer: span(S) is the smallest subspace of \mathbb{R}^n that contains S.

(b) Let W denote a subset of \mathbb{R}^n . State precisely what it means for W to be a subspace of \mathbb{R}^n .

Answer: W is a subspace of \mathbb{R}^n if and only if W is nonempty and W is closed under the vector space operations in \mathbb{R}^n .

Alternative Answer: W is a subspace of \mathbb{R}^n if and only if W is a vector space with respect to the vector space operations in \mathbb{R}^n .

- (c) Let W denote a subspace of \mathbb{R}^n . Give the definition of dim(W). **Answer:** dim(W) is the number of vectors in any basis for W.
- (d) State the Fundamental Theorem for Homogeneous Linear Systems. **Answer:** A homogeneous system of linear equations with more unknowns than equations has infinitely many solutions. \Box
- 2. Let S denote a subset of \mathbb{R}^n .
 - (a) State precisely what it means for S to be linearly independent.
 Answer: S is linearly independent means that not vector in S is in the span of the other vectors in S.
 Alternative Answer: S is linearly independent means that not vector in S is a linear combination of the other vectors in S.
 - (b) Let v and w denote vectors in \mathbb{R}^n . Prove that if the set $\{v, w\}$ is linearly independent, then the set $\{v, v + w\}$ is linearly independent.

Proof: Assume that $\{v, w\}$ is linearly independent and consider the vector equation

$$c_1 v + c_2 (v + w) = \mathbf{0},\tag{1}$$

which may be rewritten as

$$(c_1 + c_2)v + c_2w = \mathbf{0}.$$
 (2)

Math 60. Rumbos

Fall 2014 2

It follows from (2) and the assumption that the set $\{v, w\}$ is linearly independent that

$$\begin{cases} c_1 + c_2 = 0 \\ c_2 = 0. \end{cases}$$
(3)

The system in (3) can be solved to yield

$$c_1 = c_2 = 0.$$

Hence, the vector equation in (1) has only the trivial solution. Consequently, the set $\{v, v + w\}$ is linearly independent.

3. Let
$$W = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid x - 2y + z = 0 \right\}$$

(a) Explain why W is a subspace of \mathbb{R}^3 .

Solution: W is the solution set of a linear, homogenous equation; hence, W is a subspace. \Box

Alternative Solution: Observe that $W = \operatorname{span}\left(\left\{\begin{pmatrix}2\\1\\0\end{pmatrix}, \begin{pmatrix}1\\0\\-1\end{pmatrix}\right\}\right)$. Hence, W is a subspace of \mathbb{R}^3 .

(b) Verify that the set
$$B = \left\{ \begin{pmatrix} 2\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\-1 \end{pmatrix} \right\}$$
 is a basis for W .

Solution: First, see that the vectors $\begin{pmatrix} 2\\1\\0 \end{pmatrix}$ and $\begin{pmatrix} 1\\0\\-1 \end{pmatrix}$ are in W. Indeed,

$$2-2(1)-0 = 0$$
 and $1-2(0)+(-1) = 0$; thus, $\begin{pmatrix} 1\\0 \end{pmatrix} \in W$ and $\begin{pmatrix} 0\\-1 \end{pmatrix} \in W.$
(2)

Next, observe that the set B is linearly independent since the vectors $\begin{pmatrix} 1\\ 0 \end{pmatrix}$

and $\begin{pmatrix} 1\\ 0\\ -1 \end{pmatrix}$ are not multiples of each other. Thus, since W is a two dimensional subspace of \mathbb{R}^3 , it follows that B is a basis for W.

(c) Let $v = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$. Verify that $v \in W$ and give the coordinates of v relative to B; that is, compute $[v]_B$.

Solution: First, observe that 1 - 2(1) + 1 = 0; consequently, $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \in W$.

Next, we find scalars c_1 and c_2 such that

$$c_1 \begin{pmatrix} 2\\1\\0 \end{pmatrix} + c_2 \begin{pmatrix} 1\\0\\-1 \end{pmatrix} = \begin{pmatrix} 1\\1\\1 \end{pmatrix};$$

that is, we find solutions to the system of

$$\begin{cases} 2c_1 + c_1 &= 1\\ c_1 &= 1\\ -c_2 &= 1, \end{cases}$$

which has solution

$$\begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

We then have that

$$[v]_{\scriptscriptstyle B} = \begin{pmatrix} 1\\ -1 \end{pmatrix}$$

4. Find a basis for the solution space, W, of the homogenous system

$$\begin{cases} x_1 - 2x_3 = 0\\ x_2 + x_3 = 0, \end{cases}$$
(4)

and compute $\dim(W)$.

Solution: Solve for the leading variables in (4) to get

$$\begin{array}{rcl} x_1 &=& 2x_3 \\ x_2 &=& -x_3. \end{array}$$

Then, set $x_3 = t$, where t is an arbitrary parameter to get

$$\begin{array}{rcl} x_1 &=& 2t\\ x_2 &=& -t\\ x_3 &=& t \end{array}$$

Math 60. Rumbos

Thus,
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in W$$
 if and only if
 $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2t \\ -t \\ t \end{pmatrix};$
or
 $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in W$ if and only if $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = t \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix},$ for $t \in \mathbb{R}$.
In other words
 $W = \operatorname{span}\left(\left\{ \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \right\} \right).$
Hence, the set $\left\{ \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \right\}$ is a basis for W and, therefore, $\dim(W) = 1$. \Box