Solutions to Exam 1

1. Answer the following questions as thoroughly as possible.
(a) Let S denote a nonempty subset of \mathbb{R}^{n}. Give a precise definition of $\operatorname{span}(S)$. Answer: $\operatorname{span}(S)$ is the set of all finite linear combinations of vectors in S.
Alternative Answer: $\operatorname{span}(S)$ is the smallest subspace of \mathbb{R}^{n} that contains S.
(b) Let W denote a subset of \mathbb{R}^{n}. State precisely what it means for W to be a subspace of \mathbb{R}^{n}.
Answer: W is a subspace of \mathbb{R}^{n} if and only if W is nonempty and W is closed under the vector space operations in \mathbb{R}^{n}.
Alternative Answer: W is a subspace of \mathbb{R}^{n} if and only if W is a vector space with respect to the vector space operations in \mathbb{R}^{n}.
(c) Let W denote a subspace of \mathbb{R}^{n}. Give the definition of $\operatorname{dim}(W)$.

Answer: $\operatorname{dim}(W)$ is the number of vectors in any basis for W.
(d) State the Fundamental Theorem for Homogeneous Linear Systems.

Answer: A homogeneous system of linear equations with more unknowns than equations has infinitely many solutions.
2. Let S denote a subset of \mathbb{R}^{n}.
(a) State precisely what it means for S to be linearly independent.

Answer: S is linearly independent means that not vector in S is in the span of the other vectors in S.
Alternative Answer: S is linearly independent means that not vector in S is a linear combination of the other vectors in S.
(b) Let v and w denote vectors in \mathbb{R}^{n}. Prove that if the set $\{v, w\}$ is linearly independent, then the set $\{v, v+w\}$ is linearly independent.

Proof: Assume that $\{v, w\}$ is linearly independent and consider the vector equation

$$
\begin{equation*}
c_{1} v+c_{2}(v+w)=\mathbf{0} \tag{1}
\end{equation*}
$$

which may be rewritten as

$$
\begin{equation*}
\left(c_{1}+c_{2}\right) v+c_{2} w=\mathbf{0} \tag{2}
\end{equation*}
$$

It follows from (2) and the assumption that the set $\{v, w\}$ is linearly independent that

$$
\left\{\begin{align*}
c_{1}+c_{2} & =0 \tag{3}\\
c_{2} & =0 .
\end{align*}\right.
$$

The system in (3) can be solved to yield

$$
c_{1}=c_{2}=0
$$

Hence, the vector equation in (1) has only the trivial solution. Consequently, the set $\{v, v+w\}$ is linearly independent.
3. Let $W=\left\{\left.\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \in \mathbb{R}^{3} \right\rvert\, x-2 y+z=0\right\}$
(a) Explain why W is a subspace of \mathbb{R}^{3}.

Solution: W is the solution set of a linear, homogenous equation; hence, W is a subspace.
Alternative Solution: Observe that $W=\operatorname{span}\left(\left\{\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{r}1 \\ 0 \\ -1\end{array}\right)\right\}\right)$. Hence, W is a subspace of \mathbb{R}^{3}.
(b) Verify that the set $B=\left\{\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{r}1 \\ 0 \\ -1\end{array}\right)\right\}$ is a basis for W. Solution: First, see that the vectors $\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{r}1 \\ 0 \\ -1\end{array}\right)$ are in W. Indeed, $2-2(1)-0=0$ and $1-2(0)+(-1)=0$; thus, $\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right) \in W$ and $\left(\begin{array}{r}1 \\ 0 \\ -1\end{array}\right) \in W$. Next, observe that the set B is linearly independent since the vectors $\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{r}1 \\ 0 \\ -1\end{array}\right)$ are not multiples of each other. Thus, since W is a two dimensional subspace of \mathbb{R}^{3}, it follows that B is a basis for W.
(c) Let $v=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$. Verify that $v \in W$ and give the coordinates of v relative to B; that is, compute $[v]_{B}$.
Solution: First, observe that $1-2(1)+1=0$; consequently, $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) \in W$.
Next, we find scalars c_{1} and c_{2} such that

$$
c_{1}\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) ;
$$

that is, we find solutions to the system of

$$
\left\{\begin{aligned}
2 c_{1}+c_{1} & =1 \\
c_{1} & =1 \\
-c_{2} & =1
\end{aligned}\right.
$$

which has solution

$$
\binom{c_{1}}{c_{2}}=\binom{1}{-1} .
$$

We then have that

$$
[v]_{B}=\binom{1}{-1}
$$

4. Find a basis for the solution space, W, of the homogenous system

$$
\left\{\begin{array}{l}
x_{1}-2 x_{3}=0 \tag{4}\\
x_{2}+x_{3}=0
\end{array}\right.
$$

and compute $\operatorname{dim}(W)$.
Solution: Solve for the leading variables in (4) to get

$$
\begin{aligned}
& x_{1}=2 x_{3} \\
& x_{2}=-x_{3} .
\end{aligned}
$$

Then, set $x_{3}=t$, where t is an arbitrary parameter to get

$$
\begin{aligned}
x_{1} & =2 t \\
x_{2} & =-t \\
x_{3} & =t .
\end{aligned}
$$

Thus, $\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \in W$ if and only if

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{r}
2 t \\
-t \\
t
\end{array}\right)
$$

or

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \in W \quad \text { if and only if } \quad\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=t\left(\begin{array}{r}
2 \\
-1 \\
1
\end{array}\right), \quad \text { for } t \in \mathbb{R}
$$

In other words

$$
W=\operatorname{span}\left(\left\{\left(\begin{array}{r}
2 \\
-1 \\
1
\end{array}\right)\right\}\right)
$$

Hence, the set $\left\{\left(\begin{array}{r}2 \\ -1 \\ 1\end{array}\right)\right\}$ is a basis for W and, therefore, $\operatorname{dim}(W)=1$.

