Exam 2

December 5, 2014

Name: _____

This is a closed book exam. Show all significant work and explain the reasoning for all your assertions. Use your own paper and/or the paper provided by the instructor. You have 50 minutes to work on the following 4 problems. Relax.

- 1. Complete the following definitions:
 - (a) A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is linear iff ...
 - (b) A scalar, λ , is an eigenvalue of a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ iff ...
 - (c) The null space, \mathcal{N}_T , of a linear transformation $T \colon \mathbb{R}^n \to \mathbb{R}^m$ is defined to be ...
- 2. Let $\mathcal{B} = \{v_1, v_2\}$ be made up of the vectors

$$v_1 = \begin{pmatrix} 2\\1 \end{pmatrix}$$
 and $v_2 = \begin{pmatrix} 1\\2 \end{pmatrix};$

let $\mathcal{B}' = \{w_1, w_2\}$ be made up of the vectors

$$w_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 and $w_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$;

and $\mathcal{E} = \{e_1, e_2\}$ be the standard basis in \mathbb{R}^2 . Let $id: \mathbb{R}^2 \to \mathbb{R}^2$ denote the identity map in \mathbb{R}^2 .

- (a) Compute the change of basis matrices $[id]^{\mathcal{E}}_{\mathcal{B}}$ and $[id]^{\mathcal{E}}_{\mathcal{B}'}$.
- (b) Use your results from part (a) to compute the change of basis matrices $[id]_{\mathcal{E}}^{\mathcal{B}}$ and $[id]_{\mathcal{E}}^{\mathcal{B}'}$.
- (c) Use your results from parts (a) and (b) to compute the change of basis matrix $[id]_{\mathcal{B}}^{\mathcal{B}'}$.

$$T(e_1) = \begin{pmatrix} 0\\ 1\\ -1 \end{pmatrix}, \quad T(e_2) = \begin{pmatrix} 1\\ 0\\ 1 \end{pmatrix}, \text{ and } T(e_3) = \begin{pmatrix} -1\\ 1\\ 0 \end{pmatrix},$$

where $\{e_1, e_2, e_3\}$ is the standard basis in \mathbb{R}^3 .

- (a) Give the matrix representation of T relative to the standard basis in \mathbb{R}^3 .
- (b) Given that $\lambda = 1$ is an eivenvalue of the transformation T, compute the eigenspace, $E_T(1)$, corresponding to this eigenvalue. What is dim $(E_T(1))$?
- 4. Let u_1 and u_2 denote a unit vector in \mathbb{R}^3 that are orthogonal to each other; i.e., $\langle u_1, u_2 \rangle = 0$, where $\langle \cdot, \cdot \rangle$ denotes the Euclidean inner product in \mathbb{R}^3 .
 - (a) Define $f : \mathbb{R}^3 \to \mathbb{R}^3$ by $f(v) = \langle v, u_1 \rangle u_1 + \langle v, u_2 \rangle u_2$ for all $v \in \mathbb{R}^3$. Verify that f is linear.
 - (b) Verify that the set $\mathcal{B} = \{u_1, u_2\}$ is a basis for the image, \mathcal{I}_f , of f.