Exam 2

December 5, 2014
Name: \qquad

This is a closed book exam. Show all significant work and explain the reasoning for all your assertions. Use your own paper and/or the paper provided by the instructor. You have 50 minutes to work on the following 4 problems. Relax.

1. Complete the following definitions:
(a) A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear iff \ldots
(b) A scalar, λ, is an eigenvalue of a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ iff \ldots
(c) The null space, \mathcal{N}_{T}, of a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is defined to be ...
2. Let $\mathcal{B}=\left\{v_{1}, v_{2}\right\}$ be made up of the vectors

$$
v_{1}=\binom{2}{1} \quad \text { and } \quad v_{2}=\binom{1}{2}
$$

let $\mathcal{B}^{\prime}=\left\{w_{1}, w_{2}\right\}$ be made up of the vectors

$$
w_{1}=\binom{1}{1} \quad \text { and } \quad w_{2}=\binom{1}{-1}
$$

and $\mathcal{E}=\left\{e_{1}, e_{2}\right\}$ be the standard basis in \mathbb{R}^{2}.
Let $i d: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote the identity map in \mathbb{R}^{2}.
(a) Compute the change of basis matrices $[i d]_{\mathcal{B}}^{\mathcal{E}}$ and $[i d]_{\mathcal{B}^{\prime}}^{\mathcal{E}}$.
(b) Use your results from part (a) to compute the change of basis matrices $[i d]_{\mathcal{E}}^{\mathcal{B}}$ and $[i d]_{\mathcal{E}}^{\mathcal{B}^{\prime}}$.
(c) Use your results from parts (a) and (b) to compute the change of basis matrix $[i d]_{\mathcal{B}}^{\mathcal{B}^{\prime}}$.
3. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation satisfying

$$
T\left(e_{1}\right)=\left(\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right), \quad T\left(e_{2}\right)=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), \quad \text { and } \quad T\left(e_{3}\right)=\left(\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right)
$$

where $\left\{e_{1}, e_{2}, e_{3}\right\}$ is the standard basis in \mathbb{R}^{3}.
(a) Give the matrix representation of T relative to the standard basis in \mathbb{R}^{3}.
(b) Given that $\lambda=1$ is an eivenvalue of the transformation T, compute the eigenspace, $E_{T}(1)$, corresponding to this eigenvalue. What is $\operatorname{dim}\left(E_{T}(1)\right)$?
4. Let u_{1} and u_{2} denote a unit vector in \mathbb{R}^{3} that are orthogonal to each other; i.e., $\left\langle u_{1}, u_{2}\right\rangle=0$, where $\langle\cdot, \cdot\rangle$ denotes the Euclidean inner product in \mathbb{R}^{3}.
(a) Define $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by $f(v)=\left\langle v, u_{1}\right\rangle u_{1}+\left\langle v, u_{2}\right\rangle u_{2}$ for all $v \in \mathbb{R}^{3}$. Verify that f is linear.
(b) Verify that the set $\mathcal{B}=\left\{u_{1}, u_{2}\right\}$ is a basis for the image, \mathcal{I}_{f}, of f.

