Review Problems for Exam 2

1. Let $W=\left\{\left.\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \in \mathbb{R}^{3} \right\rvert\, x-y+2 z=0\right\}$. Find a basis for W consisting of vectors that are mutually orthogonal.
2. Let $v_{1}, v_{2}, \ldots, v_{k}$ be nonzero vectors in \mathbb{R}^{n} that are mutually orthogonal; that is $\left\langle v_{i}, v_{j}\right\rangle=0$ for $i \neq j$. Prove that $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is linearly independent.
3. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote the linear transformation which maps the parallelogram spanned by

$$
v_{1}=\binom{2}{-1} \quad \text { and } \quad v_{2}=\binom{2}{1}
$$

to the parallelogram spanned by

$$
w_{1}=\binom{-1}{1} \quad \text { and } \quad w_{2}=\binom{1}{1} .
$$

(a) Give the matrix representation, M_{T}, relative to the standard basis in \mathbb{R}^{2}.
(b) Compute $\operatorname{det}(T)$.
(c) Show that T is invertible and compute the inverse of T.
(d) Does T have real eigenvalues? If so, compute them and their corresponding eigenspaces.
4. Find a value of d for which the matrix

$$
A=\left(\begin{array}{rr}
1 & -2 \\
3 & d
\end{array}\right)
$$

is not invertible.
Show that, for that value of $d, \lambda=0$ is an eigenvalue of A. Give the eigenspace corresponding to 0 . What is the dimension of $E_{A}(0)$?
5. Use the fact that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ for all $A, B \in \mathbb{M}(n, n)$ to compute $\operatorname{det}\left(A^{-1}\right)$, provided that A is invertible.
6. Let A and B be $n \times n$ matrices. Show that if $A B$ is invertible, then so is A.
7. Let A be a 3×3 matrix satisfying $A^{3}-6 A^{2}-2 A+12 I=O$, where I is the 3×3 identity matrix and O is the 3×3 zero matrix.
(a) Prove that A is invertible and given a formula for computing its inverse in terms of I, A and A^{2}.
(b) Prove that if λ is an eigenvalue of A, then $\lambda^{3}-6 \lambda^{2}-2 \lambda+12=0$. Deduce therefore that λ is one of $6, \sqrt{2}$ or $-\sqrt{2}$.
8. Let u denote a unit vector in \mathbb{R}^{n} and define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by

$$
f(v)=\langle u, v\rangle u \quad \text { for all } v \in \mathbb{R}^{n}
$$

where $\langle\cdot, \cdot\rangle$ denotes the Euclidean inner product in \mathbb{R}^{n}.
(a) Verify that f is linear.
(b) Give the image, \mathcal{I}_{f}, and null space, \mathcal{N}_{f}, of f, and compute $\operatorname{dim}\left(\mathcal{I}_{f}\right)$.
(c) The Dimension Theorem for a linear transformations, $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, states that

$$
\operatorname{dim}\left(\mathcal{N}_{T}\right)+\operatorname{dim}\left(\mathcal{I}_{T}\right)=n
$$

Use the Dimension Theorem to compute $\operatorname{dim}\left(\mathcal{N}_{f}\right)$.
9. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation. Assume that λ is an eigenvalue of T. Show that λ^{m}, for any positive integer m, is an eigenvalue for T^{m}, where T^{m} is the m-fold composition of $T: T^{m}=T \circ T \circ \cdots \circ(m$ times $)$.
10. A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is said to be nilpotent if $T^{k}=O$, the zero transformation, for some positive integer k. Show that, if $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a nilpotent linear transformation, the $\lambda=0$ is the only eigenvalue of T.
11. A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is said to be involution if $T^{2}=I$, the identity transformation in \mathbb{R}^{n}. Assume $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an involution. Show that, if λ is an eigenvalue of T, then either $\lambda=1$ or $\lambda=-1$.
12. Let A denote an $n \times n$ matrix. Suppose that $A A^{T}=I$, the $n \times n$ identity matrix. Assume that λ an eigenvalue of A^{T}. Show that $\lambda \neq 0$ and λ^{-1} is an eigenvalue of A.

