1

Review Problems for Exam 2

- 1. Let $W = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid x y + 2z = 0 \right\}$. Find a basis for W consisting of vectors that are mutually orthogonal.
- 2. Let v_1, v_2, \ldots, v_k be nonzero vectors in \mathbb{R}^n that are mutually orthogonal; that is $\langle v_i, v_j \rangle = 0$ for $i \neq j$. Prove that $\{v_1, v_2, \ldots, v_k\}$ is linearly independent.
- 3. Let $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ denote the linear transformation which maps the parallelogram spanned by

$$v_1 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$
 and $v_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$

to the parallelogram spanned by

$$w_1 = \begin{pmatrix} -1\\1 \end{pmatrix}$$
 and $w_2 = \begin{pmatrix} 1\\1 \end{pmatrix}$.

- (a) Give the matrix representation, M_T , relative to the standard basis in \mathbb{R}^2 .
- (b) Compute det(T).
- (c) Show that T is invertible and compute the inverse of T.
- (d) Does T have real eigenvalues? If so, compute them and their corresponding eigenspaces.
- 4. Find a value of d for which the matrix

$$A = \left(\begin{array}{cc} 1 & -2 \\ 3 & d \end{array}\right)$$

is not invertible.

Show that, for that value of d, $\lambda = 0$ is an eigenvalue of A. Give the eigenspace corresponding to 0. What is the dimension of $E_A(0)$?

5. Use the fact that det(AB) = det(A) det(B) for all $A, B \in M(n, n)$ to compute $det(A^{-1})$, provided that A is invertible.

- 6. Let A and B be $n \times n$ matrices. Show that if AB is invertible, then so is A.
- 7. Let A be a 3×3 matrix satisfying $A^3 6A^2 2A + 12I = O$, where I is the 3×3 identity matrix and O is the 3×3 zero matrix.
 - (a) Prove that A is invertible and given a formula for computing its inverse in terms of I, A and A^2 .
 - (b) Prove that if λ is an eigenvalue of A, then $\lambda^3 6\lambda^2 2\lambda + 12 = 0$. Deduce therefore that λ is one of 6, $\sqrt{2}$ or $-\sqrt{2}$.
- 8. Let u denote a unit vector in \mathbb{R}^n and define $f: \mathbb{R}^n \to \mathbb{R}^n$ by

$$f(v) = \langle u, v \rangle u$$
 for all $v \in \mathbb{R}^n$,

where $\langle \cdot, \cdot \rangle$ denotes the Euclidean inner product in \mathbb{R}^n .

- (a) Verify that f is linear.
- (b) Give the image, \mathcal{I}_f , and null space, \mathcal{N}_f , of f, and compute dim(\mathcal{I}_f).
- (c) The Dimension Theorem for a linear transformations, $T: \mathbb{R}^n \to \mathbb{R}^m$, states that

$$\dim(\mathcal{N}_T) + \dim(\mathcal{I}_T) = n.$$

Use the Dimension Theorem to compute $\dim(\mathcal{N}_f)$.

- 9. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. Assume that λ is an eigenvalue of T. Show that λ^m , for any positive integer m, is an eigenvalue for T^m , where T^m is the m-fold composition of $T: T^m = T \circ T \circ \cdots \circ (m \text{ times})$.
- 10. A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is said to be nilpotent if $T^k = O$, the zero transformation, for some positive integer k. Show that, if $T: \mathbb{R}^n \to \mathbb{R}^n$ is a nilpotent linear transformation, the $\lambda = 0$ is the only eigenvalue of T.
- 11. A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is said to be involution if $T^2 = I$, the identity transformation in \mathbb{R}^n . Assume $T: \mathbb{R}^n \to \mathbb{R}^n$ is an involution. Show that, if λ is an eigenvalue of T, then either $\lambda = 1$ or $\lambda = -1$.
- 12. Let A denote an $n \times n$ matrix. Suppose that $AA^T = I$, the $n \times n$ identity matrix. Assume that λ an eigenvalue of A^T . Show that $\lambda \neq 0$ and λ^{-1} is an eigenvalue of A.