Solutions to Review Problems for Exam 2

1. Let $W=\left\{\left.\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \in \mathbb{R}^{3} \right\rvert\, x-y+2 z=0\right\}$. Find a basis for W consisting of vectors that are mutually orthogonal.
Solution: We first note that $W=\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{r}-2 \\ 0 \\ 1\end{array}\right)\right\}$.
Set

$$
v_{1}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \quad \text { and } \quad v_{2}=\left(\begin{array}{r}
-2 \\
0 \\
1
\end{array}\right)
$$

We then have that $\left\{v_{1}, v_{2}\right\}$ is a basis for W and $\operatorname{dim}(W)=2$.
Next, we look for a basis, $\left\{w_{1}, w_{2}\right\}$, of W made up of orthogonal vectors.
Set $w_{1}=v_{1}$ and look for $w \in \operatorname{span}\left(\left\{v_{1}, v_{2}\right\}\right)$ with the property that

$$
\begin{equation*}
\left\langle w, v_{1}\right\rangle=0 \tag{1}
\end{equation*}
$$

Write $w=c_{1} v_{1}+c_{2} v_{2}$ and substitute into (1) to get

$$
\left\langle c_{1} v_{1}+c_{2} v_{2}, v_{1}\right\rangle=0
$$

or

$$
\begin{equation*}
c_{1}\left\langle v_{1}, v_{1}\right\rangle+c_{2}\left\langle v_{2}, v_{1}\right\rangle=0, \tag{2}
\end{equation*}
$$

where we have used the bi-linearity of the inner product.
Next, compute

$$
\left\langle v_{1}, v_{1}\right\rangle=2 \quad \text { and } \quad\left\langle v_{2}, v_{1}\right\rangle=-2
$$

and substitute into (2) to get the equation

$$
2 c_{1}-2 c_{2}=0
$$

or

$$
\begin{equation*}
c_{1}-c_{2}=0 . \tag{3}
\end{equation*}
$$

The equation in (3) has infinitely many solutions given by

$$
\begin{equation*}
\binom{c_{1}}{c_{2}}=t\binom{1}{1}, \quad \text { for } t \in \mathbb{R} \tag{4}
\end{equation*}
$$

Taking $t=1$ in (4) we get that $c_{1}=c_{2}=1$, so that

$$
w=v_{1}+v_{2}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+\left(\begin{array}{r}
-2 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{r}
-1 \\
1 \\
1
\end{array}\right)
$$

is lies in W and is orthogonal to w_{1}. Set

$$
w_{2}=\left(\begin{array}{r}
-1 \\
1 \\
1
\end{array}\right)
$$

Then, $\left\{w_{1}, w_{2}\right\}$ is a basis for W made up of orthogonal vectors.
2. Let $v_{1}, v_{2}, \ldots, v_{k}$ be nonzero vectors in \mathbb{R}^{n} that are mutually orthogonal; that is $\left\langle v_{i}, v_{j}\right\rangle=0$ for $i \neq j$. Prove that $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is linearly independent.

Proof: Assume that $v_{1}, v_{2}, \ldots, v_{k}$ are nonzero vectors in \mathbb{R}^{n} that are mutually orthogonal.
Suppose that

$$
\begin{equation*}
c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{k} v_{k}=0 \tag{5}
\end{equation*}
$$

Take inner product with v_{1} on both sides of (5) to get

$$
\begin{equation*}
\left\langle c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{k} v_{k}, v_{1}\right\rangle=\left\langle 0, v_{1}\right\rangle \tag{6}
\end{equation*}
$$

Next, apply the bi-linearity of the inner product on the left-hand side of (6) to get

$$
c_{1}\left\langle v_{1}, v_{1}\right\rangle+c_{2}\left\langle v_{2}, v_{1}\right\rangle+\cdots+c_{k}\left\langle v_{k}, v_{1}\right\rangle=0
$$

so that

$$
\begin{equation*}
c_{1}\left\|v_{1}\right\|^{2}=0 \tag{7}
\end{equation*}
$$

where we have used the orthogonality assumption.
It follows from (7) and the assumption that $v_{1} \neq 0$ that $c_{1}=0$. Similarly, taking the inner product with v_{j}, for $j=2,3, \ldots, k$, on both sides of (5) yields that $c_{j}=0$ for $j=2,3, \ldots, k$. We have therefore shown that (5) implies that

$$
c_{1}=c_{2}=\cdots=c_{k}=0
$$

Hence, the set $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is linearly independent.
3. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote the linear transformation which maps the parallelogram spanned by

$$
v_{1}=\binom{2}{-1} \quad \text { and } \quad v_{2}=\binom{2}{1}
$$

to the parallelogram spanned by

$$
w_{1}=\binom{-1}{1} \quad \text { and } \quad w_{2}=\binom{1}{1}
$$

(a) Give the matrix representation, M_{T}, relative to the standard basis in \mathbb{R}^{2}.

Solution: Assume that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is linear and that $T\left(v_{1}\right)=w_{1}$ and $T\left(v_{2}\right)=w_{2}$. We compute

$$
M_{T}=\left[\begin{array}{ll}
T\left(e_{1}\right) & \left.T\left(e_{2}\right)\right] \tag{8}
\end{array}\right.
$$

In order to compute $T\left(e_{1}\right)$, first we write e_{1} in terms of v_{1} and v_{2} so that

$$
\begin{equation*}
c_{1} v_{1}+c_{2} v_{2}=e_{1} \tag{9}
\end{equation*}
$$

or

$$
\left(\begin{array}{rr}
2 & 2 \tag{10}\\
-1 & 1
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{1}{0} .
$$

The system in (10) can be solved by multiplying on both sides (on the left) by

$$
\left(\begin{array}{rr}
2 & 2 \\
-1 & 1
\end{array}\right)^{-1}=\frac{1}{4}\left(\begin{array}{rr}
1 & -2 \\
1 & 2
\end{array}\right)
$$

so that

$$
\binom{c_{1}}{c_{2}}=\frac{1}{4}\left(\begin{array}{rr}
1 & -2 \tag{11}\\
1 & 2
\end{array}\right)\binom{1}{0}=\binom{1 / 4}{1 / 4} .
$$

It follows from (9) and (11) that

$$
\begin{equation*}
e_{1}=\frac{1}{4} v_{1}+\frac{1}{4} v_{2} . \tag{12}
\end{equation*}
$$

Applying T on both sides of (12) and using the linearity of T, we obtain that

$$
\begin{aligned}
T\left(e_{1}\right) & =\frac{1}{4} T\left(v_{1}\right)+\frac{1}{4} T\left(v_{2}\right) \\
& =\frac{1}{4} w_{1}+\frac{1}{4} w_{2}
\end{aligned}
$$

so that

$$
\begin{equation*}
T\left(e_{1}\right)=\binom{0}{1 / 2} \tag{13}
\end{equation*}
$$

Similar calculations lead to that

$$
\begin{equation*}
T\left(e_{2}\right)=\binom{1}{0} \tag{14}
\end{equation*}
$$

Combining (8), (13) and (14), we obtain that the matrix representation, M_{T}, or T, relative to the standard basis in \mathbb{R}^{2} is

$$
M_{T}=\left(\begin{array}{cc}
0 & 1 \\
1 / 2 & 0
\end{array}\right)
$$

(b) Compute $\operatorname{det}(T)$. Does T preserve orientation?

Solution: Compute

$$
\operatorname{det}(T)=\operatorname{det}\left(M_{T}\right)=-\frac{1}{2}
$$

(c) Show that T is invertible and compute the inverse of T.

Solution: Since $\operatorname{det}(T) \neq 0, T$ is invertible, and the matrix representation for the inverse of T is given by

$$
M_{T}^{-1}=\frac{1}{\operatorname{det}(T)}\left(\begin{array}{cr}
0 & -1 \\
-1 / 2 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 2 \\
1 & 0
\end{array}\right)
$$

Consequently, the inverse of T is given by

$$
T^{-1}\binom{x}{y}=\left(\begin{array}{ll}
0 & 2 \\
1 & 0
\end{array}\right)\binom{x}{y}=\binom{2 y}{x}
$$

for all $\binom{x}{y} \in \mathbb{R}^{2}$.
(d) Does T have real eigenvalues? If so, compute them and their corresponding eigenspaces.
Solution: The eigenvalues of T are scalars, λ, for which the system of equations

$$
\begin{equation*}
\left(M_{T}-\lambda I\right) v=\mathbf{0} \tag{15}
\end{equation*}
$$

has nontrivial solutions. The system in (15) has nontrivial solutions if and only if the determinant of the matrix

$$
M_{T}-\lambda I=\left(\begin{array}{cc}
-\lambda & 1 \\
1 / 2 & -\lambda
\end{array}\right)
$$

is zero; that is,

$$
\operatorname{det}\left(M_{T}-\lambda I\right)=0
$$

or

$$
\lambda^{2}-\frac{1}{2}=0
$$

Thus, $\lambda_{1}=-\frac{1}{\sqrt{2}}$ and $\lambda_{2}=\frac{1}{\sqrt{2}}$ are eigenvalues of T.
To find the eigespace corresponding to λ_{1} we solve the homogenous system in (15) for $\lambda=\lambda_{1}$. We can do this by performing row operations of the augmented matrix

$$
\left(\begin{array}{cc|c}
\frac{1}{\sqrt{2}} & 1 & 0 \\
\frac{1}{2} & \frac{1}{\sqrt{2}} & 0
\end{array}\right)
$$

which is row-equivalent to the matrix

$$
\left(\begin{array}{cc|c}
1 & \sqrt{2} & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

Thus, the system in (15) for $\lambda=\lambda_{1}$ is equivalent to the homogeneous equation

$$
x_{1}+\sqrt{2} x_{2}=0,
$$

which has solutions

$$
\binom{x_{1}}{x_{2}}=t\binom{\sqrt{2}}{-1} .
$$

Thus, the eigenspace of T associated with $\lambda_{1}=-\frac{1}{\sqrt{2}}$ is

$$
E_{T}\left(\lambda_{1}\right)=\operatorname{span}\left\{\binom{\sqrt{2}}{-1}\right\} .
$$

Similarly, we can compute the eigenspace of T associated with $\lambda_{2}=\frac{1}{\sqrt{2}}$ to be

$$
E_{T}\left(\lambda_{2}\right)=\operatorname{span}\left\{\binom{\sqrt{2}}{1}\right\} .
$$

4. Find a value of d for which the matrix

$$
A=\left(\begin{array}{rr}
1 & -2 \\
3 & d
\end{array}\right)
$$

is not invertible.
Show that, for that value of $d, \lambda=0$ is an eigenvalue of A. Give the eigenspace corresponding to 0 . What is the dimension of $E_{A}(0)$?
Solution: The matrix A fails to be invertible when $\operatorname{det}(A)=0$. This occurs when $d=-6$. For this value of d, the matrix A becomes

$$
A=\left(\begin{array}{ll}
1 & -2 \\
3 & -6
\end{array}\right)
$$

and observe that its second column is a multiple of the first. Therefore, the columns of A are linearly dependent; hence, the system

$$
\begin{equation*}
A v=\mathbf{0} \tag{16}
\end{equation*}
$$

has nontrivial solutions and therefore $\lambda=0$ is an eigenvalue of A. To find the corresponding eigenspace, observe that the system in (16) is equivalent to the equation

$$
x_{1}-2 x_{2}=0,
$$

which has solutions

$$
\binom{x_{1}}{x_{2}}=t\binom{2}{1}
$$

Thus, the eigenspace of A associated with $\lambda=0$ is

$$
E_{A}(0)=\operatorname{span}\left\{\binom{2}{1}\right\} .
$$

Therefore, $\operatorname{dim}\left(E_{A}(0)\right)=1$.
5. Use the fact that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ for all $A, B \in \mathbb{M}(n, n)$ to compute $\operatorname{det}\left(A^{-1}\right)$, provided that A is invertible.

Proof: Assume that A is invertible with inverse A^{-1}. Then,

$$
A^{-1} A=I,
$$

where I is the $n \times n$ identity matrix. Taking determinants on both sides of the equation yields that

$$
\operatorname{det}\left(A^{-1} A\right)=1
$$

from which we get that

$$
\operatorname{det}\left(A^{-1}\right) \operatorname{det}(A)=1
$$

This, since $\operatorname{det}(A) \neq 0$ because A is invertible, we get that

$$
\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}
$$

6. Let A and B be $n \times n$ matrices. Show that if $A B$ is invertible, then so is A.

Proof: Suppose that $A B$ is invertible. Then, there exists an $n \times n$ matrix, C, such that

$$
(A B) C=I
$$

where I is the $n \times n$ identity matrix. Thus, by associativity of matrix multiplication,

$$
\begin{equation*}
A(B C)=I \tag{17}
\end{equation*}
$$

Applying the determinant on both sides of (17) we obtain that

$$
\operatorname{det}(A) \cdot \operatorname{det}(B C)=1
$$

from which we get that $\operatorname{det}(A) \neq 0$. Hence, A is invertible.
7. Let A be a 3×3 matrix satisfying $A^{3}-6 A^{2}-2 A+12 I=O$, where I is the 3×3 identity matrix and O is the 3×3 zero matrix.
(a) Prove that A is invertible and given a formula for computing its inverse in terms of I, A and A^{2}.
Solution: We can solve the equation $A^{3}-6 A^{2}-2 A+12 I=O$ for $12 I$ and then divide by 12 to get that

$$
A\left(\frac{1}{6} I+\frac{1}{2} A-\frac{1}{12} A^{2}\right)=I
$$

which shows that A has a right-inverse and is therefore invertible with

$$
A^{-1}=\frac{1}{6} I+\frac{1}{2} A-\frac{1}{12} A^{2} .
$$

(b) Prove that if λ is an eigenvalue of A, then $\lambda^{3}-6 \lambda^{2}-2 \lambda+12=0$. Deduce therefore that λ is one of $6, \sqrt{2}$ or $-\sqrt{2}$.

Proof: Let λ be an eigenvalue of A. Then, there exists a nonzero vector, v, in \mathbb{R}^{3} such that

$$
A v=\lambda v
$$

Multiplying on both sides by A we then get that

$$
A^{2} v=\lambda A v=\lambda(\lambda v)=\lambda^{2} v
$$

Multiplying the last equation by A we then get that

$$
A^{3} v=\lambda^{3} v
$$

Thus, applying $A^{3}-6 A^{2}-2 A+12 I=O$ to to v we get that

$$
\left(A^{3}-6 A^{2}-2 A+12 I\right) v=O v
$$

which, by the distributive property, implies that

$$
A^{3} v-6 A^{2} v-2 A v+12 v=\mathbf{0}
$$

Thus,

$$
\lambda^{3} v-6 \lambda^{2} v-2 \lambda v+12 v=\mathbf{0}
$$

or

$$
\left(\lambda^{3}-6 \lambda^{2}-2 \lambda+12\right) v=\mathbf{0}
$$

from which we get that

$$
\lambda^{3}-6 \lambda^{2}-2 \lambda+12=0
$$

since v is nonzero.
Observe that $\lambda^{3}-6 \lambda^{2}-2 \lambda+12$ factors into $(\lambda-6)(\lambda+\sqrt{2})(\lambda-\sqrt{2})$.
8. Let u denote a unit vector in \mathbb{R}^{n} and define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by

$$
f(v)=\langle u, v\rangle u \quad \text { for all } v \in \mathbb{R}^{n},
$$

where $\langle\cdot, \cdot\rangle$ denotes the Euclidean inner product in \mathbb{R}^{n}.
(a) Verify that f is linear.

Solution: For $v, w \in \mathbb{R}^{n}$, compute

$$
\begin{aligned}
f(v+w) & =\langle u, v+w\rangle u \\
& =(\langle u, v\rangle+\langle u, w\rangle) u \\
& =\langle u, v\rangle u+\langle u, w\rangle u \\
& =f(v)+f(w) .
\end{aligned}
$$

Similarly, for a scalar c and $v \in \mathbb{R}^{n}$,

$$
\begin{aligned}
f(c v) & =\langle u, c v\rangle u \\
& =c\langle u, v\rangle u \\
& =c f(v)
\end{aligned}
$$

(b) Give the image, \mathcal{I}_{f}, and null space, \mathcal{N}_{f}, of f, and compute $\operatorname{dim}\left(\mathcal{I}_{f}\right)$.

Solution: The image of f is the set

$$
\mathcal{I}_{f}=\left\{w \in \mathbb{R}^{n} \mid w=f(v) \text { for some } v \in \mathbb{R}^{n}\right\} .
$$

We claim that $\mathcal{I}_{f}=\operatorname{span}\{u\}$. To see why this is so, first observe that $f(u)=\langle u, u\rangle u=\|u\|^{2} u=u$, since u is a unit vector. Thus,

$$
\begin{equation*}
f(u)=u \tag{18}
\end{equation*}
$$

Let $w \in \operatorname{span}\{u\}$; then $w=c u$, for some scalar c. Now, by the linearity of f,

$$
w=c u=c f(u)=f(c u),
$$

where we have used (18). We have therefor shown that

$$
w \in \operatorname{span}\{u\} \Rightarrow w \in \mathcal{I}_{f}
$$

that is,

$$
\begin{equation*}
\operatorname{span}\{u\} \subseteq \mathcal{I}_{f} . \tag{19}
\end{equation*}
$$

Next, suppose that $w \in \mathcal{I}_{f}$; then, $w=f(v)$ for some $v \in \mathbb{R}^{n}$, so that

$$
w=\langle u, v\rangle u \in \operatorname{span}\{u\}
$$

Thus,

$$
\begin{equation*}
\mathcal{I}_{f} \subseteq \operatorname{span}\{u\} . \tag{20}
\end{equation*}
$$

Combining (19) and (20) yields that

$$
\mathcal{I}_{f}=\operatorname{span}\{u\} .
$$

It then follows that

$$
\begin{equation*}
\operatorname{dim}\left(\mathcal{I}_{f}\right)=1 \tag{21}
\end{equation*}
$$

The null space of f is the set

$$
\mathcal{N}_{f}=\left\{v \in \mathbb{R}^{n} \mid f(v)=\mathbf{0}\right\} .
$$

Thus,

$$
\begin{array}{ll}
v \in \mathcal{N}_{f} & \text { iff } \quad\langle u, v\rangle u=\mathbf{0} \\
& \text { iff } \quad\langle u, v\rangle=0,
\end{array}
$$

since $u \neq \mathbf{0}$. It then follows that

$$
\mathcal{N}_{f}=\left\{v \in \mathbb{R}^{n} \mid\langle u, v\rangle=0\right\} ;
$$

that is, \mathcal{N}_{f} is the space of vectors which are orthogonal to u.
(c) The Dimension Theorem for a linear transformations, $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, states that

$$
\operatorname{dim}\left(\mathcal{N}_{T}\right)+\operatorname{dim}\left(\mathcal{I}_{T}\right)=n
$$

Use the Dimension Theorem to compute $\operatorname{dim}\left(\mathcal{N}_{f}\right)$.
Solution: Using the dimension theorem and (21) we get that

$$
\operatorname{dim}\left(\mathcal{N}_{f}\right)+1=n,
$$

which implies that

$$
\operatorname{dim}\left(\mathcal{N}_{f}\right)=n-1
$$

9. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation. Assume that λ is an eigenvalue of T. Show that λ^{m}, for some positive integer m, is an eigenvalue for T^{m}, where T^{m} is the m-fold composition of $T: T^{m}=T \circ T \circ \cdots \circ(m$ times $)$.
Solution: Let λ denote an eigenvalue of the linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Then, there exists a nonzero vector $v \in \mathbb{R}^{n}$ such that

$$
\begin{equation*}
T(v)=\lambda v \tag{22}
\end{equation*}
$$

Applying T to both sides of (22) we obtain

$$
T(T(v))=T(\lambda v)
$$

so that, using the linearity of T and the definition of the m-fold composition of T,

$$
T^{2}(v)=\lambda T(v)
$$

Thus, since v is an eigenvector of T corresponding to λ,

$$
T^{2}(v)=\lambda(\lambda v)
$$

or

$$
T^{2}(v)=\lambda^{2} v
$$

Hence, λ^{2} is an eigenvalue for T^{2}.
We may now proceed by induction on m. Having shown that λ^{m-1} is an eigenvalue of T^{m-1}, we show that λ^{m} is an eigenvalue of T^{m}. Thus, assume that λ^{m-1} denote an eigenvalue of T^{m-1}. Then, there exists a nonzero vector $v \in \mathbb{R}^{n}$ such that

$$
\begin{equation*}
T^{m-1}(v)=\lambda^{m-1} v \tag{23}
\end{equation*}
$$

Applying T to both sides of (23) we obtain

$$
T\left(T^{m-1}(v)\right)=T\left(\lambda^{m-1} v\right) ;
$$

so that, using the linearity of T and the definition of the m-fold composition of T,

$$
T^{m}(v)=\lambda^{m-1} T(v)
$$

Thus, since v is an eigenvector of T corresponding to λ,

$$
T^{m}(v)=\lambda^{m-1}(\lambda v)
$$

or

$$
T^{m}(v)=\lambda^{m} v
$$

Hence, λ^{m} is an eigenvalue for T^{m}.
10. A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is said to be nilpotent if $T^{k}=O$, the zero transformation, for some positive integer k. Show that, if $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a nilpotent linear transformation, the $\lambda=0$ is the only eigenvalue of T.
Solution: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by a linear transformation satisfying $T^{k}=O$ for some positive integer k. Let λ be an eigenvalue for T; then, by the result of

Problem $9, \lambda^{k}$ is an eigenvalue of T^{k}. Thus, there exists a nonzero vector, $v \in \mathbb{R}^{n}$, such that

$$
\begin{equation*}
T^{k}(v)=\lambda^{k} v \tag{24}
\end{equation*}
$$

Thus, since T^{k} is the zero transformation in \mathbb{R}^{n}, it follows from (24) that

$$
\begin{equation*}
\lambda^{k} v=\mathbf{0} \tag{25}
\end{equation*}
$$

Hence, since v is nonzero, we obtain from (25) that $\lambda^{k}=0$, which implies that $\lambda=0$.
11. A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is said to be involution if $T^{2}=I$, the identity transformation in \mathbb{R}^{n}. Assume $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an involution. Show that, if λ is an eigenvalue of T, then either $\lambda=1$ or $\lambda=-1$.
Solution: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by a linear transformation satisfying $T^{2}=I$ and let λ be an eigenvalue for T; then, by the result of Problem $9, \lambda^{2}$ is an eigenvalue of T^{2}. Thus, there exists a nonzero vector, $v \in \mathbb{R}^{n}$, such that

$$
\begin{equation*}
T^{2}(v)=\lambda^{2} v \tag{26}
\end{equation*}
$$

Thus, since $T^{2}=I$, the identity transformation in \mathbb{R}^{n}, it follows from (26) that

$$
\lambda^{2} v=v
$$

or

$$
\begin{equation*}
\left(\lambda^{2}-1\right) v=\mathbf{0} \tag{27}
\end{equation*}
$$

Hence, since v is nonzero, we obtain from (27) that $\lambda^{2}=1$, which implies that either $\lambda=-1$ or $\lambda=1$.
12. Let A denote an $n \times n$ matrix. Suppose that $A A^{T}=I$, the $n \times n$ identity matrix. Assume that λ an eigenvalue of A^{T}. Show that $\lambda \neq 0$ and λ^{-1} is an eigenvalue of A.
Solution: Assume that

$$
\begin{equation*}
A A^{T}=I \tag{28}
\end{equation*}
$$

and that λ an eigenvalue of A^{T}.
First we see that λ cannot be 0 . Take the determinant on both sides of (28) to get

$$
\operatorname{det}\left(A A^{T}\right)=\operatorname{det}(I)=1,
$$

or

$$
\operatorname{det}(A) \operatorname{det}\left(A^{T}\right)=1,
$$

from which we get that $\operatorname{det}\left(A^{T}\right) \neq 0$. Hence, the columns of A^{T} are linearly independent, and therefore the equation

$$
A^{T} v=\mathbf{0}
$$

has only the trivial solution. Consequently, 0 cannot be an eigenvalue of A^{T}. Hence, $\lambda \neq 0$.
There exists a nonzero vector, v, in \mathbb{R}^{n} such that

$$
\begin{equation*}
A^{T} v=\lambda v \tag{29}
\end{equation*}
$$

Multiply on both sided of the equation in (29) by the matrix A on the left to get

$$
A\left(A^{T} v\right)=A(\lambda v)
$$

so that, by the associative property of matrix multiplication,

$$
\left(A A^{T}\right) v=\lambda A v
$$

or

$$
\begin{equation*}
\lambda A v=v \tag{30}
\end{equation*}
$$

since $A A^{T}=I$. It follows from (30) and the fact that $\lambda \neq 0$ that

$$
A v=\frac{1}{\lambda} v
$$

and therefore $1 / \lambda$ is an eigenvalue of A.

