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Solutions to Review Problems for Exam 2

1. Let W =


xy
z

 ∈ R3
∣∣∣ x− y + 2z = 0

 . Find a basis for W consisting of

vectors that are mutually orthogonal.

Solution: We first note that W = span


1

1
0

 ,

−2
0
1

 .

Set

v1 =

1
1
0

 and v2 =

−2
0
1

 .

We then have that {v1, v2} is a basis for W and dim(W ) = 2.

Next, we look for a basis, {w1, w2}, of W made up of orthogonal vectors.

Set w1 = v1 and look for w ∈ span({v1, v2}) with the property that

〈w, v1〉 = 0. (1)

Write w = c1v1 + c2v2 and substitute into (1) to get

〈c1v1 + c2v2, v1〉 = 0,

or
c1〈v1, v1〉+ c2〈v2, v1〉 = 0, (2)

where we have used the bi–linearity of the inner product.

Next, compute
〈v1, v1〉 = 2 and 〈v2, v1〉 = −2

and substitute into (2) to get the equation

2c1 − 2c2 = 0,

or
c1 − c2 = 0. (3)

The equation in (3) has infinitely many solutions given by(
c1
c2

)
= t

(
1
1

)
, for t ∈ R. (4)
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Taking t = 1 in (4) we get that c1 = c2 = 1, so that

w = v1 + v2 =

1
1
0

+

−2
0
1

 =

−1
1
1


is lies in W and is orthogonal to w1. Set

w2 =

−1
1
1

 .

Then, {w1, w2} is a basis for W made up of orthogonal vectors. �

2. Let v1, v2, . . . , vk be nonzero vectors in Rn that are mutually orthogonal; that
is 〈vi, vj〉 = 0 for i 6= j. Prove that {v1, v2, . . . , vk} is linearly independent.

Proof: Assume that v1, v2, . . . , vk are nonzero vectors in Rn that are mutually
orthogonal.

Suppose that
c1v1 + c2v2 + · · ·+ ckvk = 0. (5)

Take inner product with v1 on both sides of (5) to get

〈c1v1 + c2v2 + · · ·+ ckvk, v1〉 = 〈0, v1〉. (6)

Next, apply the bi–linearity of the inner product on the left–hand side of (6) to
get

c1〈v1, v1〉+ c2〈v2, v1〉+ · · ·+ ck〈vk, v1〉 = 0,

so that
c1‖v1‖2 = 0, (7)

where we have used the orthogonality assumption.

It follows from (7) and the assumption that v1 6= 0 that c1 = 0. Similarly,
taking the inner product with vj, for j = 2, 3, . . . , k, on both sides of (5) yields
that cj = 0 for j = 2, 3, . . . , k. We have therefore shown that (5) implies that

c1 = c2 = · · · = ck = 0.

Hence, the set {v1, v2, . . . , vk} is linearly independent.
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3. Let T : R2 → R2 denote the linear transformation which maps the parallelogram
spanned by

v1 =

(
2
−1

)
and v2 =

(
2
1

)
to the parallelogram spanned by

w1 =

(
−1

1

)
and w2 =

(
1
1

)
.

(a) Give the matrix representation, MT , relative to the standard basis in R2.

Solution: Assume that T : R2 → R2 is linear and that T (v1) = w1 and
T (v2) = w2. We compute

MT =
[
T (e1) T (e2)

]
. (8)

In order to compute T (e1), first we write e1 in terms of v1 and v2 so that

c1v1 + c2v2 = e1, (9)

or (
2 2
−1 1

)(
c1
c2

)
=

(
1
0

)
. (10)

The system in (10) can be solved by multiplying on both sides (on the left)
by (

2 2
−1 1

)−1
=

1

4

(
1 −2
1 2

)
,

so that (
c1
c2

)
=

1

4

(
1 −2
1 2

)(
1
0

)
=

(
1/4
1/4

)
. (11)

It follows from (9) and (11) that

e1 =
1

4
v1 +

1

4
v2. (12)

Applying T on both sides of (12) and using the linearity of T , we obtain
that

T (e1) =
1

4
T (v1) +

1

4
T (v2)

=
1

4
w1 +

1

4
w2;
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so that

T (e1) =

(
0

1/2

)
. (13)

Similar calculations lead to that

T (e2) =

(
1
0

)
. (14)

Combining (8), (13) and (14), we obtain that the matrix representation,
MT , or T , relative to the standard basis in R2 is

MT =

(
0 1

1/2 0

)
.

�

(b) Compute det(T ). Does T preserve orientation?

Solution: Compute

det(T ) = det(MT ) = −1

2
.

�

(c) Show that T is invertible and compute the inverse of T .

Solution: Since det(T ) 6= 0, T is invertible, and the matrix representation
for the inverse of T is given by

M−1
T =

1

det(T )

(
0 −1

−1/2 0

)
=

(
0 2
1 0

)
.

Consequently, the inverse of T is given by

T−1
(
x
y

)
=

(
0 2
1 0

)(
x
y

)
=

(
2y
x

)

for all

(
x
y

)
∈ R2. �

(d) Does T have real eigenvalues? If so, compute them and their corresponding
eigenspaces.

Solution: The eigenvalues of T are scalars, λ, for which the system of
equations

(MT − λI)v = 0 (15)
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has nontrivial solutions. The system in (15) has nontrivial solutions if and
only if the determinant of the matrix

MT − λI =

(
−λ 1
1/2 −λ

)
is zero; that is,

det(MT − λI) = 0,

or

λ2 − 1

2
= 0.

Thus, λ1 = − 1√
2

and λ2 =
1√
2

are eigenvalues of T .

To find the eigespace corresponding to λ1 we solve the homogenous system
in (15) for λ = λ1. We can do this by performing row operations of the
augmented matrix (

1√
2

1 | 0
1
2

1√
2
| 0

)
,

which is row–equivalent to the matrix(
1
√

2 | 0
0 0 | 0

)
.

Thus, the system in (15) for λ = λ1 is equivalent to the homogeneous
equation

x1 +
√

2 x2 = 0,

which has solutions (
x1
x2

)
= t

( √
2
−1

)
.

Thus, the eigenspace of T associated with λ1 = − 1√
2

is

ET (λ1) = span

{( √
2
−1

)}
.

Similarly, we can compute the eigenspace of T associated with λ2 =
1√
2

to be

ET (λ2) = span

{( √
2
1

)}
.

�
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4. Find a value of d for which the matrix

A =

(
1 −2
3 d

)
is not invertible.

Show that, for that value of d, λ = 0 is an eigenvalue of A. Give the eigenspace
corresponding to 0. What is the dimension of EA(0)?

Solution: The matrix A fails to be invertible when det(A) = 0. This occurs
when d = −6. For this value of d, the matrix A becomes

A =

(
1 −2
3 −6

)
and observe that its second column is a multiple of the first. Therefore, the
columns of A are linearly dependent; hence, the system

Av = 0 (16)

has nontrivial solutions and therefore λ = 0 is an eigenvalue of A. To find the
corresponding eigenspace, observe that the system in (16) is equivalent to the
equation

x1 − 2x2 = 0,

which has solutions (
x1
x2

)
= t

(
2
1

)
.

Thus, the eigenspace of A associated with λ = 0 is

EA(0) = span

{(
2
1

)}
.

Therefore, dim(EA(0)) = 1. �

5. Use the fact that det(AB) = det(A) det(B) for all A,B ∈ M(n, n) to compute
det(A−1), provided that A is invertible.

Proof: Assume that A is invertible with inverse A−1. Then,

A−1A = I,
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where I is the n× n identity matrix. Taking determinants on both sides of the
equation yields that

det(A−1A) = 1,

from which we get that
det(A−1) det(A) = 1.

This, since det(A) 6= 0 because A is invertible, we get that

det(A−1) =
1

det(A)
.

6. Let A and B be n× n matrices. Show that if AB is invertible, then so is A.

Proof: Suppose that AB is invertible. Then, there exists an n × n matrix, C,
such that

(AB)C = I,

where I is the n× n identity matrix. Thus, by associativity of matrix multipli-
cation,

A(BC) = I (17)

Applying the determinant on both sides of (17) we obtain that

det(A) · det(BC) = 1,

from which we get that det(A) 6= 0. Hence, A is invertible.

7. Let A be a 3 × 3 matrix satisfying A3 − 6A2 − 2A + 12I = O, where I is the
3× 3 identity matrix and O is the 3× 3 zero matrix.

(a) Prove that A is invertible and given a formula for computing its inverse in
terms of I, A and A2.

Solution: We can solve the equation A3 − 6A2 − 2A + 12I = O for 12I
and then divide by 12 to get that

A

(
1

6
I +

1

2
A− 1

12
A2

)
= I,

which shows that A has a right–inverse and is therefore invertible with

A−1 =
1

6
I +

1

2
A− 1

12
A2.

�
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(b) Prove that if λ is an eigenvalue of A, then λ3− 6λ2− 2λ+ 12 = 0. Deduce
therefore that λ is one of 6,

√
2 or −

√
2.

Proof: Let λ be an eigenvalue of A. Then, there exists a nonzero vector,
v, in R3 such that

Av = λv.

Multiplying on both sides by A we then get that

A2v = λAv = λ(λv) = λ2v.

Multiplying the last equation by A we then get that

A3v = λ3v.

Thus, applying A3 − 6A2 − 2A+ 12I = O to to v we get that

(A3 − 6A2 − 2A+ 12I)v = Ov,

which, by the distributive property, implies that

A3v − 6A2v − 2Av + 12v = 0.

Thus,
λ3v − 6λ2v − 2λv + 12v = 0,

or
(λ3 − 6λ2 − 2λ+ 12)v = 0,

from which we get that

λ3 − 6λ2 − 2λ+ 12 = 0,

since v is nonzero.

Observe that λ3− 6λ2− 2λ+ 12 factors into (λ− 6)(λ+
√

2)(λ−
√

2).

8. Let u denote a unit vector in Rn and define f : Rn → Rn by

f(v) = 〈u, v〉u for all v ∈ Rn,

where 〈·, ·〉 denotes the Euclidean inner product in Rn.
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(a) Verify that f is linear.

Solution: For v, w ∈ Rn, compute

f(v + w) = 〈u, v + w〉u
= (〈u, v〉+ 〈u,w〉)u
= 〈u, v〉u+ 〈u,w〉u
= f(v) + f(w).

Similarly, for a scalar c and v ∈ Rn,

f(cv) = 〈u, cv〉u
= c〈u, v〉u
= cf(v).

�

(b) Give the image, If , and null space, Nf , of f , and compute dim(If ).

Solution: The image of f is the set

If = {w ∈ Rn | w = f(v) for some v ∈ Rn}.

We claim that If = span{u}. To see why this is so, first observe that
f(u) = 〈u, u〉u = ‖u‖2u = u, since u is a unit vector. Thus,

f(u) = u. (18)

Let w ∈ span{u}; then w = cu, for some scalar c. Now, by the linearity of
f ,

w = cu = cf(u) = f(cu),

where we have used (18). We have therefor shown that

w ∈ span{u} ⇒ w ∈ If ;

that is,
span{u} ⊆ If . (19)

Next, suppose that w ∈ If ; then, w = f(v) for some v ∈ Rn, so that

w = 〈u, v〉u ∈ span{u}.

Thus,
If ⊆ span{u}. (20)
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Combining (19) and (20) yields that

If = span{u}.

It then follows that
dim(If ) = 1. (21)

The null space of f is the set

Nf = {v ∈ Rn | f(v) = 0}.

Thus,
v ∈ Nf iff 〈u, v〉u = 0

iff 〈u, v〉 = 0,

since u 6= 0. It then follows that

Nf = {v ∈ Rn | 〈u, v〉 = 0};

that is, Nf is the space of vectors which are orthogonal to u. �

(c) The Dimension Theorem for a linear transformations, T : Rn → Rm, states
that

dim(NT ) + dim(IT ) = n.

Use the Dimension Theorem to compute dim(Nf ).

Solution: Using the dimension theorem and (21) we get that

dim(Nf ) + 1 = n,

which implies that
dim(Nf ) = n− 1.

�

9. Let T : Rn → Rn be a linear transformation. Assume that λ is an eigenvalue of
T . Show that λm, for some positive integer m, is an eigenvalue for Tm, where
Tm is the m–fold composition of T : Tm = T ◦ T ◦ · · · ◦ (m times).

Solution: Let λ denote an eigenvalue of the linear transformation T : Rn → Rn.
Then, there exists a nonzero vector v ∈ Rn such that

T (v) = λv. (22)
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Applying T to both sides of (22) we obtain

T (T (v)) = T (λv);

so that, using the linearity of T and the definition of the m–fold composition of
T ,

T 2(v) = λT (v).

Thus, since v is an eigenvector of T corresponding to λ,

T 2(v) = λ(λv),

or
T 2(v) = λ2v.

Hence, λ2 is an eigenvalue for T 2.

We may now proceed by induction on m. Having shown that λm−1 is an eigen-
value of Tm−1, we show that λm is an eigenvalue of Tm. Thus, assume that
λm−1 denote an eigenvalue of Tm−1. Then, there exists a nonzero vector v ∈ Rn

such that
Tm−1(v) = λm−1v. (23)

Applying T to both sides of (23) we obtain

T (Tm−1(v)) = T (λm−1v);

so that, using the linearity of T and the definition of the m–fold composition of
T ,

Tm(v) = λm−1T (v).

Thus, since v is an eigenvector of T corresponding to λ,

Tm(v) = λm−1(λv),

or
Tm(v) = λmv.

Hence, λm is an eigenvalue for Tm. �

10. A linear transformation T : Rn → Rn is said to be nilpotent if T k = O, the
zero transformation, for some positive integer k. Show that, if T : Rn → Rn is
a nilpotent linear transformation, the λ = 0 is the only eigenvalue of T .

Solution: Let T : Rn → Rn by a linear transformation satisfying T k = O for
some positive integer k. Let λ be an eigenvalue for T ; then, by the result of
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Problem 9, λk is an eigenvalue of T k. Thus, there exists a nonzero vector,
v ∈ Rn, such that

T k(v) = λkv. (24)

Thus, since T k is the zero transformation in Rn, it follows from (24) that

λkv = 0. (25)

Hence, since v is nonzero, we obtain from (25) that λk = 0, which implies that
λ = 0. �

11. A linear transformation T : Rn → Rn is said to be involution if T 2 = I, the
identity transformation in Rn. Assume T : Rn → Rn is an involution. Show
that, if λ is an eigenvalue of T , then either λ = 1 or λ = −1.

Solution: Let T : Rn → Rn by a linear transformation satisfying T 2 = I and
let λ be an eigenvalue for T ; then, by the result of Problem 9, λ2 is an eigenvalue
of T 2. Thus, there exists a nonzero vector, v ∈ Rn, such that

T 2(v) = λ2v. (26)

Thus, since T 2 = I, the identity transformation in Rn, it follows from (26) that

λ2v = v,

or
(λ2 − 1)v = 0. (27)

Hence, since v is nonzero, we obtain from (27) that λ2 = 1, which implies that
either λ = −1 or λ = 1. �

12. Let A denote an n × n matrix. Suppose that AAT = I, the n × n identity
matrix. Assume that λ an eigenvalue of AT . Show that λ 6= 0 and λ−1 is an
eigenvalue of A.

Solution: Assume that
AAT = I (28)

and that λ an eigenvalue of AT .

First we see that λ cannot be 0. Take the determinant on both sides of (28) to
get

det(AAT ) = det(I) = 1,
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or
det(A) det(AT ) = 1,

from which we get that det(AT ) 6= 0. Hence, the columns of AT are linearly
independent, and therefore the equation

ATv = 0

has only the trivial solution. Consequently, 0 cannot be an eigenvalue of AT .
Hence, λ 6= 0.

There exists a nonzero vector, v, in Rn such that

ATv = λv. (29)

Multiply on both sided of the equation in (29) by the matrix A on the left to
get

A(ATv) = A(λv);

so that, by the associative property of matrix multiplication,

(AAT )v = λAv,

or
λAv = v, (30)

since AAT = I. It follows from (30) and the fact that λ 6= 0 that

Av =
1

λ
v,

and therefore 1/λ is an eigenvalue of A. �


