Solutions to Exam 2

1. Complete the following definitions:
(a) A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear iff \ldots

Answer: A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear iff for any vectors v and w in \mathbb{R}^{n}, and for any scalar c,
(i) $f(v+w)=f(v)+f(w)$, and
(ii) $f(c v)=c f(v)$.
(b) A scalar, λ, is an eigenvalue of a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ iff \ldots Answer: A scalar, λ, is an eigenvalue of a linear transformation $T: \mathbb{R}^{n} \rightarrow$ \mathbb{R}^{n} iff the equation

$$
T(v)=\lambda v
$$

has a nontrivial solution in \mathbb{R}^{n}.
(c) The null space, \mathcal{N}_{T}, of a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is defined to be ...
Answer: The null space, \mathcal{N}_{T}, of a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is defined to be the set

$$
\mathcal{N}_{T}=\left\{v \in \mathbb{R}^{n} \mid T(v)=\mathbf{0}\right\}
$$

2. Let $\mathcal{B}=\left\{v_{1}, v_{2}\right\}$ be made up of the vectors

$$
v_{1}=\binom{2}{1} \quad \text { and } \quad v_{2}=\binom{1}{2} ;
$$

let $\mathcal{B}^{\prime}=\left\{w_{1}, w_{2}\right\}$ be made up of the vectors

$$
w_{1}=\binom{1}{1} \quad \text { and } \quad w_{2}=\binom{1}{-1}
$$

and $\mathcal{E}=\left\{e_{1}, e_{2}\right\}$ be the standard basis in \mathbb{R}^{2}.
Let $i d: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote the identity map in \mathbb{R}^{2}.
(a) Compute the change of basis matrices $[i d]_{\mathcal{B}}^{\mathcal{E}}$ and $[i d]_{\mathcal{B}^{\prime}}^{\mathcal{E}}$.

Solution: We first compute

$$
\begin{aligned}
{[i d]_{\mathcal{B}}^{\mathcal{E}} } & =\left[\begin{array}{ll}
{\left[i d\left(v_{1}\right)\right]_{\mathcal{E}}} & {\left[i d\left(v_{2}\right)\right]_{\mathcal{E}}}
\end{array}\right] \\
& =\left[\begin{array}{ll}
{\left[v_{1}\right]_{\mathcal{E}}} & {\left[v_{2}\right]_{\mathcal{E}}}
\end{array}\right] \\
& =\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]
\end{aligned}
$$

so that

$$
[i d]_{\mathcal{B}}^{\mathcal{E}}=\left(\begin{array}{ll}
2 & 1 \tag{1}\\
1 & 2
\end{array}\right)
$$

Similarly,

$$
[i d]_{\mathcal{B}^{\prime}}^{\mathcal{E}}=\left[\begin{array}{ll}
w_{1} & w_{2}
\end{array}\right]=\left(\begin{array}{rr}
1 & 1 \tag{2}\\
1 & -1
\end{array}\right)
$$

(b) Use your results from part (a) to compute the change of basis matrices $[i d]_{\mathcal{E}}^{\mathcal{B}}$ and $[i d]_{\mathcal{E}}^{\mathcal{B}^{\prime}}$.
Solution: The matrices $[i d]_{\mathcal{E}}^{\mathcal{B}}$ and $[i d]_{\mathcal{E}}^{\mathcal{B}^{\prime}}$ are the inverses of the matrices in (1) and (2), respectively. Thus,

$$
[i d]_{\mathcal{E}}^{\mathcal{B}}=\left([i d]_{\mathcal{B}}^{\mathcal{E}}\right)^{-1}=\frac{1}{3}\left(\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right)
$$

and

$$
[i d]_{\mathcal{E}}^{\mathcal{B}^{\prime}}=\left([i d]_{\mathcal{B}^{\prime}}^{\mathcal{E}}\right)^{-1}=\frac{1}{-2}\left(\begin{array}{rr}
-1 & -1 \\
-1 & 1
\end{array}\right)
$$

or

$$
[i d]_{\mathcal{E}}^{\mathcal{B}^{\prime}}=\frac{1}{2}\left(\begin{array}{rr}
1 & 1 \tag{3}\\
1 & -1
\end{array}\right)
$$

(c) Use your results from parts (a) and (b) to compute the change of basis matrix $[i d]_{\mathcal{B}}^{\mathcal{B}^{\prime}}$.
Solution: Compute

$$
[i d]_{\mathcal{B}}^{\mathcal{B}^{\prime}}=[i d]_{\mathcal{E}}^{\mathcal{B}^{\prime}}[i d]_{\mathcal{B}}^{\mathcal{E}},
$$

where the matrices $[i d]_{\mathcal{E}}^{\mathcal{B}^{\prime}}$ and $[i d]_{\mathcal{B}}^{\mathcal{E}}$ are given in (3) and (1), respectively; so that,

$$
[i d]_{\mathcal{B}}^{\mathcal{B}^{\prime}}=\frac{1}{2}\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)=\frac{1}{2}\left(\begin{array}{rr}
3 & 3 \\
1 & -1
\end{array}\right) .
$$

3. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation satisfying

$$
T\left(e_{1}\right)=\left(\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right), \quad T\left(e_{2}\right)=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), \quad \text { and } \quad T\left(e_{3}\right)=\left(\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right)
$$

where $\left\{e_{1}, e_{2}, e_{3}\right\}$ is the standard basis in \mathbb{R}^{3}.
(a) Give the matrix representation of T relative to the standard basis in \mathbb{R}^{3}. Solution:

$$
M_{T}=\left[\begin{array}{lll}
T\left(e_{1}\right) & T\left(e_{2}\right) & T\left(e_{3}\right)
\end{array}\right]=\left(\begin{array}{rrr}
0 & 1 & -1 \\
1 & 0 & 1 \\
-1 & 1 & 0
\end{array}\right) .
$$

(b) Given that $\lambda=1$ is an eivenvalue of the transformation T, compute the eigenspace, $E_{T}(1)$, corresponding to this eigenvalue. What is $\operatorname{dim}\left(E_{T}(1)\right)$? Solution: Solve the equation

$$
\begin{equation*}
\left(M_{T}-I\right) v=\mathbf{0}, \tag{4}
\end{equation*}
$$

by reducing the augmented matrix

$$
\left(\begin{array}{rrr|r}
-1 & 1 & -1 & 0 \\
1 & -1 & 1 & 0 \\
-1 & 1 & -1 & 0
\end{array}\right)
$$

to

$$
\left(\begin{array}{rrr|r}
1 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

so that the system in (4) is equivalent to the equation

$$
\begin{equation*}
x_{1}-x_{2}+x_{3}=0 \tag{5}
\end{equation*}
$$

Solving the equation in (5) for the leading variable x_{1} leads to

$$
x_{1}=x_{2}-x_{3}
$$

and setting $x_{2}=t$ and $x_{3}=-s$, where t and s are arbitrary parameters leads to

$$
\begin{aligned}
& x_{1}=t+s \\
& x_{2}=t \\
& x_{3}=-s
\end{aligned}
$$

so that, the solution space to the system in (4) is the set

$$
\left\{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \in \mathbb{R}^{3} \left\lvert\,\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=t\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+s\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right)\right., \quad t, s \in \mathbb{R}\right\}
$$

It then follows that the eigenspace corresponding to the eigenvalue $\lambda=1$ is

$$
E_{T}(1)=\operatorname{span}\left(\left\{\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right)\right\}\right)
$$

Hence, $\operatorname{dim}\left(E_{T}(1)\right)=2$.
4. Let u_{1} and u_{2} denote a unit vector in \mathbb{R}^{3} that are orthogonal to each other; i.e., $\left\langle u_{1}, u_{2}\right\rangle=0$, where $\langle\cdot, \cdot\rangle$ denotes the Euclidean inner product in \mathbb{R}^{3}.
(a) Define $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by $f(v)=\left\langle v, u_{1}\right\rangle u_{1}+\left\langle v, u_{2}\right\rangle u_{2}$ for all $v \in \mathbb{R}^{3}$. Verify that f is linear.
Solution: Let v and w be vectors in \mathbb{R}^{3} and compute

$$
f(v+w)=\left\langle v+w, u_{1}\right\rangle u_{1}+\left\langle v+w, u_{2}\right\rangle u_{2}
$$

so that, using the bi-linearity of the Euclidean inner product and the distributive and associative properties for real numbers,

$$
\begin{aligned}
f(v+w) & =\left(\left\langle v, u_{1}\right\rangle+\left\langle w, u_{1}\right\rangle\right) u_{1}+\left(\left\langle v, u_{2}\right\rangle+\left\langle w, u_{2}\right\rangle\right) u_{2} \\
& =\left\langle v, u_{1}\right\rangle u_{1}+\left\langle w, u_{1}\right\rangle u_{1}+\left\langle v, u_{2}\right\rangle u_{2}+\left\langle w, u_{2}\right\rangle u_{2} \\
& =\left\langle v, u_{1}\right\rangle u_{1}+\left\langle v, u_{2}\right\rangle u_{2}+\left\langle w, u_{1}\right\rangle u_{1}+\left\langle w, u_{2}\right\rangle u_{2} \\
& =f(v)+f(w) .
\end{aligned}
$$

Similarly, for $v \in \mathbb{R}^{3}$ and $c \in \mathbb{R}$,

$$
f(c v)=\left\langle c v, u_{1}\right\rangle u_{1}+\left\langle c v, u_{2}\right\rangle u_{2}
$$

so that, using the linearity of the Euclidean inner product
(b) Verify that the set $\mathcal{B}=\left\{u_{1}, u_{2}\right\}$ is a basis for the image, \mathcal{I}_{f}, of f.

Solution: First, we show that

$$
\begin{equation*}
\mathcal{I}_{f}=\operatorname{span}\left(\left\{u_{1}, u_{2}\right\}\right) \tag{6}
\end{equation*}
$$

Let $w \in \mathcal{I}_{f}$; then, there exists $v \in \mathbb{R}^{3}$ such that

$$
w=f(v)=\left\langle v, u_{1}\right\rangle u_{1}+\left\langle v, u_{2}\right\rangle u_{2}
$$

which is a linear combination of u_{1} and u_{2}. We have therefore shown that

$$
\begin{equation*}
\mathcal{I}_{f} \subseteq \operatorname{span}\left(\left\{u_{1}, u_{2}\right\}\right) \tag{7}
\end{equation*}
$$

In order to show the other inclusion, note that

$$
f\left(u_{1}\right)=\left\langle u_{1}, u_{1}\right\rangle u_{1}+\left\langle u_{1}, u_{2}\right\rangle u_{2}=u_{1},
$$

since $\left\langle u_{1}, u_{2}\right\rangle=0$ and u_{1} is a unit vector. Thus, $u_{1}=f\left(u_{1}\right)$; so that $u_{1} \in \mathcal{I}_{f}$. Similarly, $u_{2} \in \mathcal{I}_{f}$. We then have that

$$
\left\{u_{1}, u_{2}\right\} \subseteq \mathcal{I}_{f}
$$

from which we get that

$$
\begin{equation*}
\operatorname{span}\left(\left\{u_{1}, u_{2}\right\}\right) \subseteq \mathcal{I}_{f} \tag{8}
\end{equation*}
$$

since \mathcal{I}_{f} is a subspace of \mathbb{R}^{3} and $\operatorname{span}\left(\left\{u_{1}, u_{2}\right\}\right)$ is the smallest subspace of \mathbb{R}^{3} that contains $\left\{u_{1}, u_{2}\right\}$. Combining (7) and (8) yields (6).
Next, we show that $\left\{u_{1}, u_{2}\right\}$ is linearly independent.
Consider the equation

$$
\begin{equation*}
c_{1} u_{1}+c_{2} u_{2}=\mathbf{0} . \tag{9}
\end{equation*}
$$

Take the inner product with u_{1} on both sides of (9) to get

$$
\left\langle c_{1} u_{1}+c_{2} u_{2}, u_{1}\right\rangle=\left\langle\mathbf{0}, u_{1}\right\rangle
$$

or, using the bi-linearity of the inner product,

$$
\begin{equation*}
c_{1}\left\langle u_{1}, u_{1}\right\rangle+c_{2}\left\langle u_{2}, u_{1}\right\rangle=0 \tag{10}
\end{equation*}
$$

thus, since $\left\langle u_{1}, u_{2}\right\rangle=0$ and u_{1} is a unit vector, it follows from (10) that $c_{1}=0$. Similarly, $c_{2}=0$. We therefore get that the equation in (9) has only the trivial solution. Therefore, the set $\left\{u_{1}, u_{2}\right\}$ is linearly independent. Hence, in view of (6), $\left\{u_{1}, u_{2}\right\}$ is a basis for \mathcal{I}_{f}.

