Solutions to Exam 2

- 1. Complete the following definitions:
 - (a) A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is linear iff ... **Answer**: A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is linear iff for any vectors v and w in \mathbb{R}^n , and for any scalar c,
 - (i) f(v+w) = f(v) + f(w), and (ii) f(cv) = cf(v).
 - (b) A scalar, λ , is an eigenvalue of a linear transformation $T \colon \mathbb{R}^n \to \mathbb{R}^n$ iff ... **Answer**: A scalar, λ , is an eigenvalue of a linear transformation $T \colon \mathbb{R}^n \to \mathbb{R}^n$ iff the equation

$$T(v) = \lambda v,$$

has a nontrivial solution in \mathbb{R}^n .

(c) The null space, \mathcal{N}_T , of a linear transformation $T \colon \mathbb{R}^n \to \mathbb{R}^m$ is defined to be ...

Answer: The null space, \mathcal{N}_T , of a linear transformation $T \colon \mathbb{R}^n \to \mathbb{R}^m$ is defined to be the set

$$\mathcal{N}_T = \{ v \in \mathbb{R}^n \mid T(v) = \mathbf{0} \}.$$

2. Let $\mathcal{B} = \{v_1, v_2\}$ be made up of the vectors

$$v_1 = \begin{pmatrix} 2\\1 \end{pmatrix}$$
 and $v_2 = \begin{pmatrix} 1\\2 \end{pmatrix};$

let $\mathcal{B}' = \{w_1, w_2\}$ be made up of the vectors

$$w_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 and $w_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$;

and $\mathcal{E} = \{e_1, e_2\}$ be the standard basis in \mathbb{R}^2 . Let $id: \mathbb{R}^2 \to \mathbb{R}^2$ denote the identity map in \mathbb{R}^2 .

Math 60. Rumbos

(a) Compute the change of basis matrices $[id]_{\mathcal{B}}^{\mathcal{E}}$ and $[id]_{\mathcal{B}'}^{\mathcal{E}}$. Solution: We first compute

$$[id]_{\mathcal{B}}^{\mathcal{E}} = [[id(v_1)]_{\mathcal{E}} \quad [id(v_2)]_{\mathcal{E}}]$$
$$= [[v_1]_{\mathcal{E}} \quad [v_2]_{\mathcal{E}}]$$
$$= [v_1 \quad v_2];$$

so that

$$[id]_{\mathcal{B}}^{\mathcal{E}} = \begin{pmatrix} 2 & 1\\ 1 & 2 \end{pmatrix}.$$
 (1)

Similarly,

$$[id]_{\mathcal{B}'}^{\mathcal{E}} = \begin{bmatrix} w_1 & w_2 \end{bmatrix} = \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}.$$
 (2)

(b) Use your results from part (a) to compute the change of basis matrices $[id]_{\mathcal{E}}^{\mathcal{B}}$ and $[id]_{\mathcal{E}}^{\mathcal{B}'}$.

Solution: The matrices $[id]_{\mathcal{E}}^{\mathcal{B}}$ and $[id]_{\mathcal{E}}^{\mathcal{B}'}$ are the inverses of the matrices in (1) and (2), respectively. Thus,

$$[id]_{\mathcal{E}}^{\mathcal{B}} = \left([id]_{\mathcal{B}}^{\mathcal{E}}\right)^{-1} = \frac{1}{3} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

and

or

$$[id]_{\mathcal{E}}^{\mathcal{B}'} = \left([id]_{\mathcal{B}'}^{\mathcal{E}} \right)^{-1} = \frac{1}{-2} \begin{pmatrix} -1 & -1 \\ -1 & 1 \end{pmatrix}.$$
$$[id]_{\mathcal{E}}^{\mathcal{B}'} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$
(3)

(c) Use your results from parts (a) and (b) to compute the change of basis matrix $[id]_{\mathcal{B}}^{\mathcal{B}'}$.

Solution: Compute

$$[id]^{\mathcal{B}'}_{\mathcal{B}} = [id]^{\mathcal{B}'}_{\mathcal{E}} [id]^{\mathcal{E}}_{\mathcal{B}},$$

where the matrices $[id]_{\mathcal{E}}^{\mathcal{B}'}$ and $[id]_{\mathcal{B}}^{\mathcal{E}}$ are given in (3) and (1), respectively; so that,

$$[id]_{\mathcal{B}}^{\mathcal{B}'} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 3 & 3 \\ 1 & -1 \end{pmatrix}.$$

3. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation satisfying

$$T(e_1) = \begin{pmatrix} 0\\1\\-1 \end{pmatrix}, \quad T(e_2) = \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \quad \text{and} \quad T(e_3) = \begin{pmatrix} -1\\1\\0 \end{pmatrix},$$

where $\{e_1, e_2, e_3\}$ is the standard basis in \mathbb{R}^3 .

(a) Give the matrix representation of T relative to the standard basis in \mathbb{R}^3 . Solution:

$$M_{T} = \begin{bmatrix} T(e_{1}) & T(e_{2}) & T(e_{3}) \end{bmatrix} = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix}.$$

(b) Given that $\lambda = 1$ is an eivenvalue of the transformation T, compute the eigenspace, $E_T(1)$, corresponding to this eigenvalue. What is dim $(E_T(1))$? **Solution**: Solve the equation

$$(M_T - I)v = \mathbf{0},\tag{4}$$

by reducing the augmented matrix

$$\begin{pmatrix} -1 & 1 & -1 & | & 0 \\ 1 & -1 & 1 & | & 0 \\ -1 & 1 & -1 & | & 0 \end{pmatrix}$$

to

so that the system in (4) is equivalent to the equation

$$x_1 - x_2 + x_3 = 0. (5)$$

Solving the equation in (5) for the leading variable x_1 leads to

$$x_1 = x_2 - x_3;$$

and setting $x_2 = t$ and $x_3 = -s$, where t and s are arbitrary parameters leads to

$$\begin{array}{rcl} x_1 &=& t+s\\ x_2 &=& t\\ x_3 &=& -s; \end{array}$$

so that, the solution space to the system in (4) is the set

$$\left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 \mid \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = t \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + s \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \quad t, s \in \mathbb{R} \right\}.$$

It then follows that the eigenspace corresponding to the eigenvalue $\lambda = 1$ is

$$E_T(1) = \operatorname{span}\left(\left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\-1 \end{pmatrix} \right\} \right).$$

Hence, dim $(E_T(1)) = 2.$

- 4. Let u_1 and u_2 denote a unit vector in \mathbb{R}^3 that are orthogonal to each other; i.e., $\langle u_1, u_2 \rangle = 0$, where $\langle \cdot, \cdot \rangle$ denotes the Euclidean inner product in \mathbb{R}^3 .
 - (a) Define $f : \mathbb{R}^3 \to \mathbb{R}^3$ by $f(v) = \langle v, u_1 \rangle u_1 + \langle v, u_2 \rangle u_2$ for all $v \in \mathbb{R}^3$. Verify that f is linear.

Solution: Let v and w be vectors in \mathbb{R}^3 and compute

$$f(v+w) = \langle v+w, u_1 \rangle u_1 + \langle v+w, u_2 \rangle u_2;$$

so that, using the bi–linearity of the Euclidean inner product and the distributive and associative properties for real numbers,

$$f(v+w) = (\langle v, u_1 \rangle + \langle w, u_1 \rangle)u_1 + (\langle v, u_2 \rangle + \langle w, u_2 \rangle)u_2$$

$$= \langle v, u_1 \rangle u_1 + \langle w, u_1 \rangle u_1 + \langle v, u_2 \rangle u_2 + \langle w, u_2 \rangle u_2$$

$$= \langle v, u_1 \rangle u_1 + \langle v, u_2 \rangle u_2 + \langle w, u_1 \rangle u_1 + \langle w, u_2 \rangle u_2$$

$$= f(v) + f(w).$$

Similarly, for $v \in \mathbb{R}^3$ and $c \in \mathbb{R}$,

$$f(cv) = \langle cv, u_1 \rangle u_1 + \langle cv, u_2 \rangle u_2;$$

so that, using the linearity of the Euclidean inner product

Math 60. Rumbos

(b) Verify that the set $\mathcal{B} = \{u_1, u_2\}$ is a basis for the image, \mathcal{I}_f , of f. Solution: First, we show that

$$\mathcal{I}_f = \operatorname{span}(\{u_1, u_2\}). \tag{6}$$

Let $w \in \mathcal{I}_f$; then, there exists $v \in \mathbb{R}^3$ such that

$$w = f(v) = \langle v, u_1 \rangle u_1 + \langle v, u_2 \rangle u_2,$$

which is a linear combination of u_1 and u_2 . We have therefore shown that

$$\mathcal{I}_f \subseteq \operatorname{span}(\{u_1, u_2\}). \tag{7}$$

In order to show the other inclusion, note that

$$f(u_1) = \langle u_1, u_1 \rangle u_1 + \langle u_1, u_2 \rangle u_2 = u_1,$$

since $\langle u_1, u_2 \rangle = 0$ and u_1 is a unit vector. Thus, $u_1 = f(u_1)$; so that $u_1 \in \mathcal{I}_f$. Similarly, $u_2 \in \mathcal{I}_f$. We then have that

 $\{u_1, u_2\} \subseteq \mathcal{I}_f,$

from which we get that

$$\operatorname{span}(\{u_1, u_2\}) \subseteq \mathcal{I}_f,\tag{8}$$

since \mathcal{I}_f is a subspace of \mathbb{R}^3 and span($\{u_1, u_2\}$) is the smallest subspace of \mathbb{R}^3 that contains $\{u_1, u_2\}$. Combining (7) and (8) yields (6). Next, we show that $\{u_1, u_2\}$ is linearly independent. Consider the equation

$$c_1 u_1 + c_2 u_2 = \mathbf{0}. \tag{9}$$

Take the inner product with u_1 on both sides of (9) to get

$$\langle c_1 u_1 + c_2 u_2, u_1 \rangle = \langle \mathbf{0}, u_1 \rangle,$$

or, using the bi–linearity of the inner product,

$$c_1\langle u_1, u_1 \rangle + c_2\langle u_2, u_1 \rangle = 0; \tag{10}$$

thus, since $\langle u_1, u_2 \rangle = 0$ and u_1 is a unit vector, it follows from (10) that $c_1 = 0$. Similarly, $c_2 = 0$. We therefore get that the equation in (9) has only the trivial solution. Therefore, the set $\{u_1, u_2\}$ is linearly independent. Hence, in view of (6), $\{u_1, u_2\}$ is a basis for \mathcal{I}_f .