Review Problems for Final Exam

- 1. Let W be a subspace of \mathbb{R}^n . Prove that $\operatorname{span}(W) = W$.
- 2. Let S be linearly independent subset of \mathbb{R}^n . Suppose that $v \notin \operatorname{span}(S)$. Show that the set $S \cup \{v\}$ is linearly independent.
- 3. Let W be a subspace of \mathbb{R}^n with dimension k < n. Let $\{w_1, w_2, \ldots, w_k\}$ be a basis for W. Prove that there exist vectors $v_1, v_2, \ldots, v_{n-k}$ in \mathbb{R}^n such that the set $\{w_1, w_2, \ldots, w_k, v_1, v_2, \ldots, v_{n-k}\}$ is a basis for \mathbb{R}^n .
- 4. Let A be an $m \times n$ matrix and $b \in \mathbb{R}^m$. Prove that if Ax = b has a solution x in \mathbb{R}^n , then $\langle b, v \rangle = 0$ for every v is the null space of A^T .

5. Let
$$R = \begin{pmatrix} 2 & -1 & 3 \end{pmatrix}$$
 and $C = \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}$

Compute the products RC and CR.

6. Let
$$A \in \mathbb{M}(m, n)$$
 and write $A = \begin{pmatrix} R_1 \\ R_2 \\ \vdots \\ R_m \end{pmatrix}$, where R_1, R_2, \dots, R_m denote the

rows of A. Define \mathcal{R}_A^{\perp} to be the set

$$\mathcal{R}_A^{\perp} = \{ w \in \mathbb{R}^n \mid R_i w = 0 \text{ for all } i = 1, 2, \dots, m \};$$

that is, \mathcal{R}_A^{\perp} is the set of vectors in \mathbb{R}^n which are orthogonal to the vectors $R_1^T, R_2^T, \ldots, R_m^T$ in \mathbb{R}^n .

- (a) Prove that \mathcal{R}_A^{\perp} is a subspace of \mathbb{R}^n .
- (b) Prove that $\mathcal{R}_A^{\perp} = \mathcal{N}_A$.
- (c) Let v denote a vector in \mathbb{R}^n . Prove that if $v \in \mathcal{N}_A$ and $v^T \in \mathcal{R}_A$, then $v = \mathbf{0}$.
- 7. Let B be an $n \times n$ matrix satisfying $B^3 = 0$ and put A = I + B, where I denotes the $n \times n$ identity matrix. Prove that A is invertible and compute A^{-1} in terms of I, B and B^2 .
- 8. Let $A, B \in \mathbb{M}(2, 2)$. Verify that $\det(AB) = \det(BA)$.

9. Let $A, B \in \mathbb{M}(2, 2)$. Verify that $\det(A^T) = \det(A)$.

10. Given an $n \times n$ matrix $A = [a_{ij}]$, the trace of A, denoted $\operatorname{tr}(A)$, is the sum of the entries along the main diagonal of A; that is $\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}$.

Let A and B denote $n \times n$ matrices. Show that tr(AB) = tr(BA).

11. Let A and B be $n \times n$ matrices such that $B = Q^{-1}AQ$ for some invertible $n \times n$ matrix Q.

Prove that A and B have the same determinant and the same trace.

12. Let
$$A = \begin{pmatrix} 1/2 & 1/3 \\ 1/2 & 2/3 \end{pmatrix}$$

- (a) Find a basis $\mathcal{B} = \{v_1, v_2\}$ for \mathbb{R}^2 made up of eigenvectors of A.
- (b) Let Q be the 2 × 2 matrix $Q = \begin{bmatrix} v_1 & v_2 \end{bmatrix}$, where $\{v_1, v_2\}$ is the basis of eigenvectors found in (a) above. Verify that Q is invertible and compute $Q^{-1}AQ$.
- (c) Use the result in part (b) above to find a formula for for computing A^k for every positive integer k. Can you say anything about $\lim A^k$?
- 13. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Let $S = \{v_1, v_2, \ldots, v_k\}$ be a set of vectors in \mathbb{R}^n .
 - (a) Suppose that the set of vectors $\{T(v_1), T(v_2), \ldots, T(v_k)\}$ is a linearly independent set of vectors in \mathbb{R}^m . Prove that the set S must be a linearly independent set in \mathbb{R}^n .
 - (b) Is the converse of the statement in part (a) true? If not, produce a counter– example to show that the converse is generally false
- 14. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ denote a linear transformation. Let W denote the null space, \mathcal{N}_T , of T. Assume that W has dimension k < n. Let $\{w_1, w_2, \ldots, w_k\}$ be a basis for W and $\{w_1, w_2, \ldots, w_k, v_1, v_2, \ldots, v_{n-k}\}$ be a basis for \mathbb{R}^n . Prove that that the set $\{T(v_1), T(v_2), \ldots, T(v_{n-k})\}$ is a basis for \mathcal{I}_T , the image of T. Deduce the Dimension Theorem

$$\dim(\mathcal{N}_T) + \dim(\mathcal{I}_T) = n.$$

15. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ denote a linear transformation. Prove that if λ is an eigenvalue of T, then λ^k is an eigenvalue of T^k for every positive integer k. If μ is an eigenvalue of T^k , is $\mu^{1/k}$ always and eigenvalue of T?

- 16. Let $\mathcal{E} = \{e_1, e_2\}$ denote the standard basis in \mathbb{R}^2 , and let $f \colon \mathbb{R}^2 \to \mathbb{R}^2$ be a linear function satisfying: $f(e_1) = e_1 + e_2$ and $f(e_2) = 2e_1 e_2$. Give the matrix representations for f and $f \circ f$ relative to \mathcal{E} .
- 17. A function $f: \mathbb{R}^2 \to \mathbb{R}^2$ is defined as follows: Each vector $v \in \mathbb{R}^2$ is reflected across the *y*-axis, and then doubled in length to yield f(v).

Verify that f is linear and determine the matrix representation, M_f , for f relative to the standard basis in \mathbb{R}^2 .

- 18. Find a 2 × 2 matrix A such that the function $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by T(v) = Av maps the coordinates of any vector, relative to the standard basis in \mathbb{R}^2 , to its coordinates relative the basis $\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$.
- 19. Let u_1 and u_2 denote a unit vector in \mathbb{R}^3 that are orthogonal to each other; i.e., $\langle u_1, u_2 \rangle = 0$, where $\langle \cdot, \cdot \rangle$ denotes the Euclidean inner product in \mathbb{R}^3 . Define $f \colon \mathbb{R}^3 \to \mathbb{R}^3$ by $f(v) = \langle v, u_1 \rangle u_1 + \langle v, u_2 \rangle u_2$ for all $v \in \mathbb{R}^3$.
 - (a) Use the Dimension Theorem to compute $\dim(\mathcal{N}_f)$.
 - (b) Show that v f(v) is orthogonal to every vector w in the image of f.
 - (c) Show that f(v) gives the point in the plane spanned by u_1 and u_2 that is the closest to v in \mathbb{R}^3 .