Review Problems for Final Exam

1. Let W be a subspace of \mathbb{R}^{n}. Prove that $\operatorname{span}(W)=W$.
2. Let S be linearly independent subset of \mathbb{R}^{n}. Suppose that $v \notin \operatorname{span}(S)$. Show that the set $S \cup\{v\}$ is linearly independent.
3. Let W be a subspace of \mathbb{R}^{n} with dimension $k<n$. Let $\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ be a basis for W. Prove that there exist vectors $v_{1}, v_{2}, \ldots, v_{n-k}$ in \mathbb{R}^{n} such that the set $\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{1}, v_{2}, \ldots, v_{n-k}\right\}$ is a basis for \mathbb{R}^{n}.
4. Let A be an $m \times n$ matrix and $b \in \mathbb{R}^{m}$. Prove that if $A x=b$ has a solution x in \mathbb{R}^{n}, then $\langle b, v\rangle=0$ for every v is the null space of A^{T}.
5. Let $R=\left(\begin{array}{lll}2 & -1 & 3\end{array}\right)$ and $C=\left(\begin{array}{r}-1 \\ 1 \\ -2\end{array}\right)$.

Compute the products $R C$ and $C R$.
6. Let $A \in \mathbb{M}(m, n)$ and write $A=\left(\begin{array}{c}R_{1} \\ R_{2} \\ \vdots \\ R_{m}\end{array}\right)$, where $R_{1}, R_{2}, \ldots, R_{m}$ denote the rows of A. Define \mathcal{R}_{A}^{\perp} to be the set

$$
\mathcal{R}_{A}^{\perp}=\left\{w \in \mathbb{R}^{n} \mid R_{i} w=0 \text { for all } i=1,2, \ldots, m\right\}
$$

that is, \mathcal{R}_{A}^{\perp} is the set of vectors in \mathbb{R}^{n} which are orthogonal to the vectors $R_{1}^{T}, R_{2}^{T}, \ldots, R_{m}^{T}$ in \mathbb{R}^{n}.
(a) Prove that \mathcal{R}_{A}^{\perp} is a subspace of \mathbb{R}^{n}.
(b) Prove that $\mathcal{R}_{A}^{\perp}=\mathcal{N}_{A}$.
(c) Let v denote a vector in \mathbb{R}^{n}. Prove that if $v \in \mathcal{N}_{A}$ and $v^{T} \in \mathcal{R}_{A}$, then $v=0$.
7. Let B be an $n \times n$ matrix satisfying $B^{3}=0$ and put $A=I+B$, where I denotes the $n \times n$ identity matrix. Prove that A is invertible and compute A^{-1} in terms of I, B and B^{2}.
8. Let $A, B \in \mathbb{M}(2,2)$. Verify that $\operatorname{det}(A B)=\operatorname{det}(B A)$.
9. Let $A, B \in \mathbb{M}(2,2)$. Verify that $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$.
10. Given an $n \times n$ matrix $A=\left[a_{i j}\right]$, the trace of A, denoted $\operatorname{tr}(A)$, is the sum of the entries along the main diagonal of A; that is $\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}$.
Let A and B denote $n \times n$ matrices. Show that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.
11. Let A and B be $n \times n$ matrices such that $B=Q^{-1} A Q$ for some invertible $n \times n$ matrix Q.
Prove that A and B have the same determinant and the same trace.
12. Let $A=\left(\begin{array}{ll}1 / 2 & 1 / 3 \\ 1 / 2 & 2 / 3\end{array}\right)$.
(a) Find a basis $\mathcal{B}=\left\{v_{1}, v_{2}\right\}$ for \mathbb{R}^{2} made up of eigenvectors of A.
(b) Let Q be the 2×2 matrix $Q=\left[\begin{array}{ll}v_{1} & v_{2}\end{array}\right]$, where $\left\{v_{1}, v_{2}\right\}$ is the basis of eigenvectors found in (a) above. Verify that Q is invertible and compute $Q^{-1} A Q$.
(c) Use the result in part (b) above to find a formula for for computing A^{k} for every positive integer k. Can you say anything about $\lim _{k \rightarrow \infty} A^{k}$?
13. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be a set of vectors in \mathbb{R}^{n}.
(a) Suppose that the set of vectors $\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{k}\right)\right\}$ is a linearly independent set of vectors in \mathbb{R}^{m}. Prove that the set S must be a linearly independent set in \mathbb{R}^{n}.
(b) Is the converse of the statement in part (a) true? If not, produce a counterexample to show that the converse is generally false
14. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ denote a linear transformation. Let W denote the null space, \mathcal{N}_{T}, of T. Assume that W has dimension $k<n$. Let $\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ be a basis for W and $\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{1}, v_{2}, \ldots, v_{n-k}\right\}$ be a basis for \mathbb{R}^{n}. Prove that that the set $\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{n-k}\right)\right\}$ is a basis for \mathcal{I}_{T}, the image of T. Deduce the Dimension Theorem

$$
\operatorname{dim}\left(\mathcal{N}_{T}\right)+\operatorname{dim}\left(\mathcal{I}_{T}\right)=n
$$

15. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ denote a linear transformation. Prove that if λ is an eigenvalue of T, then λ^{k} is an eigenvalue of T^{k} for every positive integer k. If μ is an eigenvalue of T^{k}, is $\mu^{1 / k}$ always and eigenvalue of T ?
16. Let $\mathcal{E}=\left\{e_{1}, e_{2}\right\}$ denote the standard basis in \mathbb{R}^{2}, and let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear function satisfying: $f\left(e_{1}\right)=e_{1}+e_{2}$ and $f\left(e_{2}\right)=2 e_{1}-e_{2}$.
Give the matrix representations for f and $f \circ f$ relative to \mathcal{E}.
17. A function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is defined as follows: Each vector $v \in \mathbb{R}^{2}$ is reflected across the y-axis, and then doubled in length to yield $f(v)$.
Verify that f is linear and determine the matrix representation, M_{f}, for f relative to the standard basis in \mathbb{R}^{2}.
18. Find a 2×2 matrix A such that the function $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $T(v)=A v$ maps the coordinates of any vector, relative to the standard basis in \mathbb{R}^{2}, to its coordinates relative the basis $\mathcal{B}=\left\{\binom{1}{1},\binom{1}{-1}\right\}$.
19. Let u_{1} and u_{2} denote a unit vector in \mathbb{R}^{3} that are orthogonal to each other; i.e., $\left\langle u_{1}, u_{2}\right\rangle=0$, where $\langle\cdot, \cdot\rangle$ denotes the Euclidean inner product in \mathbb{R}^{3}.
Define $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by $f(v)=\left\langle v, u_{1}\right\rangle u_{1}+\left\langle v, u_{2}\right\rangle u_{2}$ for all $v \in \mathbb{R}^{3}$.
(a) Use the Dimension Theorem to compute $\operatorname{dim}\left(\mathcal{N}_{f}\right)$.
(b) Show that $v-f(v)$ is orthogonal to every vector w in the image of f.
(c) Show that $f(v)$ gives the point in the plane spanned by u_{1} and u_{2} that is the closest to v in \mathbb{R}^{3}.
