Solutions to Review Problems for Final Exam

1. Let W be a subspace of \mathbb{R}^n . Prove that $\operatorname{span}(W) = W$.

Proof: Assume that W is a subspace of \mathbb{R}^n . Then, since span(W) is the smallest subspace of \mathbb{R}^n that contains W, it follows that

$$W \subseteq \operatorname{span}(W) \tag{1}$$

and

$$\operatorname{span}(W) \subseteq W.$$
 (2)

The inclusion in (2) follows from the fact that $W \subseteq W$ and the assumption that W is a subspace. Combining (1) and (2) yields the equality

$$\operatorname{span}(W) = W$$

2. Let S be linearly independent subset of \mathbb{R}^n . Suppose that $v \notin \operatorname{span}(S)$. Show that the set $S \cup \{v\}$ is linearly independent.

Proof: Assume that S is linearly independent subset of \mathbb{R}^n and that v is a vector in \mathbb{R}^n with

$$v \notin \operatorname{span}(S).$$
 (3)

Assume that c_1, c_2, \ldots, c_k and c solve the equation

$$c_1 v_1 + c_2 v_2 + \dots + c_k v_k + cv = \mathbf{0},\tag{4}$$

where $v_1, v_2, \ldots, v_k \in S$.

We first see that c = 0 in (4); otherwise we can solve for v in (4) to obtain

$$v = -\frac{c_1}{c}v_1 - \frac{c_2}{c}v_2 - \dots - \frac{c_k}{c}v_k,$$

which shows that $v \in \text{span}(S)$, and this is in direct contradiction with (3). Hence,

$$c = 0 \tag{5}$$

and, substituting into (4),

$$c_1v_1 + c_2v_2 + \dots + c_kv_k = \mathbf{0}.$$
 (6)

Next, since the vectors v_1, v_2, \ldots, v_k are in S and S is linearly independent, it follows from (6) that

$$c_1 = c_2 = \dots = c_k = 0. \tag{7}$$

Combining (5) and (6) we see that (4) implies that

$$c_1 = c_2 = \cdots = c_k = c = 0;$$

hence, $S \cup \{v\}$ is linearly independent.

3. Let W be a subspace of \mathbb{R}^n with dimension k < n. Let $\{w_1, w_2, \ldots, w_k\}$ be a basis for W. Prove that there exist vectors $v_1, v_2, \ldots, v_{n-k}$ in \mathbb{R}^n such that the set $\{w_1, w_2, \ldots, w_k, v_1, v_2, \ldots, v_{n-k}\}$ is a basis for \mathbb{R}^n .

Proof: Assume that W is a subspace of \mathbb{R}^n with basis $\{w_1, w_2, \ldots, w_k\}$; so that $\dim(W) = k$. Assume also that k < n. Then, there exists $v_1 \in \mathbb{R}^n$ such that $v_1 \notin \operatorname{span}(\{w_1, w_2, \ldots, w_k\})$; otherwise, $\{w_1, w_2, \ldots, w_k\}$ would span \mathbb{R}^n and it would therefore be a basis for \mathbb{R}^n , since it is also linearly independent; but this is impossible because k < n. It therefore follows from Problem 2 above that the set $\{w_1, w_2, \ldots, w_k, v_1\}$ is linearly independent.

If $\{w_1, w_2, \ldots, w_k, v_1\}$ spans \mathbb{R}^n , it would be basis for \mathbb{R}^n , so that k+1 = n and the proof of the statement is done. On the other hand, if $\operatorname{span}(\{w_1, w_2, \ldots, w_k, v_1\}) \neq \mathbb{R}^n$, there exists $v_2 \in \mathbb{R}^n$ such that

$$v_2 \notin \operatorname{span}(\{w_1, w_2, \dots, w_k, v_1\}).$$

Consequently, the set $\{w_1, w_2, \ldots, w_k, v_1, v_2\}$ is linearly independent, by Problem 2 above. If span $(\{w_1, w_2, \ldots, w_k, v_1, v_2\}) = \mathbb{R}^n$ we are done and k + 2 = n. If not, there exists $v_3 \in \mathbb{R}^n$ such that

$$v_3 \notin \text{span}(\{w_1, w_2, \dots, w_k, v_1, v_2\}).$$

Continuing in this fashion, we obtain a set of vectors v_1, v_2, \ldots, v_ℓ in \mathbb{R}^n such that the set

 $\{w_1, w_2, \ldots, w_k, v_1, v_2, \ldots, v_\ell\}$

is linearly independent and

$$\operatorname{span}(\{w_1, w_2, \dots, w_k, v_1, v_2, \dots, v_\ell\}) = \mathbb{R}^n$$

Hence, the set $\{w_1, w_2, \ldots, w_k, v_1, v_2, \ldots, v_\ell\}$ is a basis for \mathbb{R}^n ; so that

 $k+\ell=n,$

from which we get that $\ell = n - k$, and the proof of the assertion is now complete.

4. Let A be an $m \times n$ matrix and $b \in \mathbb{R}^m$. Prove that if Ax = b has a solution x in \mathbb{R}^n , then $\langle b, v \rangle = 0$ for every v is the null space of A^T .

Solution: Let x be a solution of Ax = b and $v \in \mathcal{N}_{A^T}$. Then, $A^T v = \mathbf{0}$ and

$$\begin{array}{lll} \langle b, v \rangle & = & \langle Ax, v \rangle \\ & = & (Ax)^T v \\ & = & x^T A^T v \\ & = & x^T \mathbf{0} \\ & = & 0. \end{array}$$

5. Let
$$R = \begin{pmatrix} 2 & -1 & 3 \end{pmatrix}$$
 and $C = \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}$.

Compute the products RC and CR. Solution: Compute

$$RC = \begin{pmatrix} 2 & -1 & 3 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix} = -2 - 1 - 6 = -9,$$

and

$$CR = \begin{pmatrix} -1\\ 1\\ -2 \end{pmatrix} \begin{pmatrix} 2 & -1 & 3 \end{pmatrix} = \begin{pmatrix} -2 & 1 & -3\\ 2 & -1 & 3\\ -4 & 2 & -6 \end{pmatrix}.$$

6. Let
$$A \in \mathbb{M}(m, n)$$
 and write $A = \begin{pmatrix} R_1 \\ R_2 \\ \vdots \\ R_m \end{pmatrix}$, where R_1, R_2, \dots, R_m denote the

rows of A. Define \mathcal{R}_A^{\perp} to be the set

$$\mathcal{R}_A^{\perp} = \{ w \in \mathbb{R}^n \mid R_i w = 0 \text{ for all } i = 1, 2, \dots, m \};$$

that is, \mathcal{R}_A^{\perp} is the set of vectors in \mathbb{R}^n which are orthogonal to the vectors $R_1^T, R_2^T, \ldots, R_m^T$ in \mathbb{R}^n .

(a) Prove that \mathcal{R}_A^{\perp} is a subspace of \mathbb{R}^n . **Solution**: First, observe that $R_i \mathbf{0} = 0$ for all i = 1, 2, ..., m, so that $\mathbf{0} \in \mathcal{R}_A^{\perp}$ and so $\mathcal{R}_A^{\perp} \neq \emptyset$.

Next, let w_1 and w_2 be vectors in \mathcal{R}_A^{\perp} . Then,

$$R_i w_1 = 0$$
 for all $i = 1, 2, \dots, m;$ (8)

and

$$R_i w_2 = 0$$
 for all $i = 1, 2, \dots, m.$ (9)

Thus, adding the equations in (8) and (9), and using the distributive property of matrix multiplication, we get

$$R_i(w_1 + w_2) = 0$$
 for all $i = 1, 2, \dots, m$

which shows that $w_1 + w_2 \in \mathcal{R}_A^{\perp}$. Hence, \mathcal{R}_A^{\perp} is closed under vector addition. Next, let $w \in \mathcal{R}_A^{\perp}$ and c be a scalar. Then,

$$R_i w = 0$$
 for all $i = 1, 2, \dots, m$. (10)

Thus, multiplying the equation in (10),

$$cR_iw = 0$$
 for all $i = 1, 2, \ldots, m$.

from which we get

$$R_i(cw) = 0$$
 for all $i = 1, 2, \dots, m$,

by the linearity of the Euclidean inner product. Hence, $cw \in \mathcal{R}_A^{\perp}$, and we have therefore shown that \mathcal{R}_A^{\perp} is closed under scalar multiplication.

We have shown that \mathcal{R}_A^{\perp} is nonempty and closed under vector addition and scalar multiplication. Hence, \mathcal{R}_A^{\perp} is subspace of \mathbb{R}^n .

(b) Prove that $\mathcal{R}_A^{\perp} = \mathcal{N}_A$.

Proof: The following chain of equivalences is true:

$$w \in \mathcal{R}_A^{\perp}$$
 iff $R_i w = 0$ for all $i = 1, 2, \dots, m$

$$\text{iff} \quad \begin{pmatrix} R_1 w \\ R_2 w \\ \vdots \\ R_m v \end{pmatrix} = \mathbf{0}$$

iff
$$Aw = \mathbf{0}$$

iff $w \in \mathcal{N}_A$.

Consequently, $\mathcal{R}_A^{\perp} = \mathcal{N}_A$.

(c) Denote by \mathcal{R}_A the span of the rows of the matrix A. Let v denote a vector in \mathbb{R}^n . Prove that if $v \in \mathcal{N}_A$ and $v^T \in \mathcal{R}_A$, then $v = \mathbf{0}$.

Proof: Assume that $v \in \mathbb{R}^n$ is in \mathcal{N}_A and its transpose, v^T , is in the row-space of A, \mathcal{R}_A . By the result of part (b), $v \in \mathcal{R}_A^{\perp}$; that is,

$$R_i v = 0$$
 for $i = 1, 2, \dots, m$. (11)

Now, since $v^T \in \mathcal{R}_A$, there exist scalars c_1, c_2, \ldots, c_m such that

$$v^{T} = c_1 R_1 + c_2 R_2 + \dots + c_m R_m.$$
(12)

Multiplying both sides of (12) on the right by v we obtain

$$v^T v = (c_1 R_1 + c_2 R_2 + \dots + c_m R_m) v,$$

or

$$||v||^2 = c_1 R_1 v + c_2 R_2 v + \dots + c_m R_m v, \tag{13}$$

where we have used the distributive property of matrix multiplication. Combining (11) and (13) we see that ||v|| = 0, from which we get that $v = \mathbf{0}$.

7. Let B be an $n \times n$ matrix satisfying $B^3 = 0$ and put A = I + B, where I denotes the $n \times n$ identity matrix. Prove that A is invertible and compute A^{-1} in terms of I, B and B^2 .

Solution: Set $Q = c_1I + c_2B + c_3B^2$ and look for scalars c_1 , c_2 and c_3 such that AQ = I.

Now,

$$AQ = (I+B)Q$$

= $c_1I + c_2B + c_3B^2 + B(c_1I + c_2B + c_3B^2)$
= $c_1I + c_2B + c_3B^2 + c_1B + c_2B^2 + c_3B^3$
= $c_1I + (c_1 + c_2)B + (c_2 + c_3)B^2$,

where we have used the assumption that $B^3 = O$. Thus, AQ = I if and only if

$$\begin{cases} c_1 = 1 \\ c_1 + c_2 = 0 \\ c_2 + c_3 = 0. \end{cases}$$

Solving this system we get $c_1 = 1$, $c_2 = -1$ and $c_3 = 1$. Hence, if $Q = I - B + B^2$, then Q is a right-inverse of A = I + B and therefore A = I + B is invertible and $A^{-1} = I - B + B^2$.

8. Let $A, B \in \mathbb{M}(2, 2)$. Show that $\det(AB) = \det(BA)$.

Proof: Compute

$$\det(AB) = \det(A)\det(B)$$

$$= \det(B) \det(A),$$

since multiplication of real numbers is commutative. Hence,

$$\det(AB) = \det(BA)$$

which was to be shown.

9. Let $A, B \in \mathbb{M}(2, 2)$. Verify that $\det(A^T) = \det(A)$. **Solution**: Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Then, $A^T = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ and, therefore, $\det(A^T) = ad - bc = \det(A)$,

which was to be shown.

10. Given an $n \times n$ matrix $A = [a_{ij}]$, the trace of A, denoted $\operatorname{tr}(A)$, is the sum of the entries along the main diagonal of A; that is $\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}$. Let A and B denote $n \times n$ matrices. Show that $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

Proof: Write $A = [a_{ij}]$ and $B = [b_{jk}]$ for i = 1, 2, ..., n, j = 1, 2, ..., n and k = 1, 2, ..., n. Then, $AB = [c_{ik}]$, where

$$c_{ik} = \sum_{j=1}^{n} a_{ij} b_{jk}.$$
 (14)

Consequently,

$$\operatorname{tr}(AB) = \sum_{i=1}^{n} c_{ii}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} b_{ji},$$
(15)

7

where we have used (14).

Interchanging the order of summation in (15) we obtain

$$\operatorname{tr}(AB) = \sum_{j=1}^{n} \sum_{i=1}^{n} a_{ij} b_{ji}$$
$$= \sum_{j=1}^{n} \sum_{i=1}^{n} b_{ji} a_{ij}$$
$$= \sum_{j=1}^{n} d_{jj},$$

where

$$d_{jj} = \sum_{i=1}^{n} b_{ji} a_{ij}, \quad \text{for } j = 1, 2, \dots, n,$$

are the entries along the main diagonal of the matrix product BA. Hence, we have shown that tr(AB) = tr(BA).

11. Let A and B be $n \times n$ matrices such that $B = Q^{-1}AQ$ for some invertible $n \times n$ matrix Q.

Prove that A and B have the same determinant and the same trace.

Solution: Use the result of Problem 8 to compute

$$det(B) = det(Q^{-1}AQ)$$
$$= det(QQ^{-1}A)$$
$$= det(IA)$$
$$= det(A).$$

Similarly, using the result of Problem 10,

$$tr(B) = tr(Q^{-1}AQ)$$
$$= tr(QQ^{-1}A)$$
$$= tr(IA)$$
$$= tr(A).$$

(a) Find a basis $\mathcal{B} = \{v_1, v_2\}$ for \mathbb{R}^2 made up of eigenvectors of A. **Solution**: First, we look for values of λ such that the system

$$(A - \lambda I)v = \mathbf{0} \tag{16}$$

has nontrivial solutions in \mathbb{R}^2 . This is the case if and only if

$$\det(A - \lambda I) = 0,$$

which occurs if and only if

$$\lambda^2 - \frac{7}{6}\lambda + \frac{1}{6} = 0,$$

or

$$(\lambda - 1)\left(\lambda - \frac{1}{6}\right) = 0.$$

We then get that

$$\lambda_1 = \frac{1}{6}$$
 and $\lambda_2 = 1$

are eigenvalues of A.

To find an eigenvector corresponding to the eigenvalue λ_1 , we solve the system in (16) for $\lambda = \lambda_1$. In this case, the system can be reduced to the equation

$$x_1 + x_2 = 0,$$

which has solutions

$$\left(\begin{array}{c} x_1\\ x_2 \end{array}\right) = t \left(\begin{array}{c} 1\\ -1 \end{array}\right),$$

where t is arbitrary. We can therefore take

$$v_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

as an eigenvector corresponding to $\lambda = \frac{1}{6}$. Similar calculations for $\lambda = \lambda_2 = 1$ lead to the equation

$$3x_1 - 2x_2 = 0,$$

which has solutions

$$\left(\begin{array}{c} x_1\\ x_2 \end{array}\right) = t \left(\begin{array}{c} 2\\ 3 \end{array}\right),$$

where t is arbitrary. Thus, in this case, we obtain the eigenvector

$$v_2 = \begin{pmatrix} 2\\ 3 \end{pmatrix}$$

Since v_1 and v_2 are linearly independent, they constitute a basis for \mathbb{R}^2 because dim $(\mathbb{R}^2) = 2$.

(b) Let Q be the 2 × 2 matrix $Q = \begin{bmatrix} v_1 & v_2 \end{bmatrix}$, where $\{v_1, v_2\}$ is the basis of eigenvectors found in (a) above. Verify that Q is invertible and compute $Q^{-1}AQ$.

Solution: $Q = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$, so that $det(Q) = 3 + 2 = 5 \neq 0$. Hence Q is invertible and

$$Q^{-1} = \frac{1}{5} \begin{pmatrix} 3 & -2 \\ 1 & 1 \end{pmatrix}.$$

Next, compute

$$Q^{-1}AQ = \frac{1}{5} \begin{pmatrix} 3 & -2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1/2 & 1/3 \\ 1/2 & 2/3 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$$
$$= \frac{1}{5} \begin{pmatrix} 3 & -2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1/6 & 2 \\ -1/6 & 3 \end{pmatrix}$$
$$= \frac{1}{5} \begin{pmatrix} 5/6 & 0 \\ 0 & 5 \end{pmatrix}$$
$$= \begin{pmatrix} 1/6 & 0 \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}.$$

Thus, $Q^{-1}AQ$ is a diagonal matrix with the eigenvalues of A as entries along the main diagonal.

(c) Use the result in part (b) above to find a formula for for computing A^k for every positive integer k. Can you say anything about $\lim_{k\to\infty} A^k$?

Solution: Let *D* denote the matrix $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$. Then, from part (b) in this problem,

$$Q^{-1}AQ = D.$$

Multiplying this equation by Q on the left and Q^{-1} on the right, we obtain that

$$A = QDQ^{-1}.$$

It then follows that

$$A^{2} = (QDQ^{-1})(QDQ^{-1})$$
$$= QD(Q^{-1}Q)DQ^{-1}$$
$$= QDIDQ^{-1}$$
$$= QD^{2}Q^{-1}.$$

We may now proceed by induction on k to show that

$$A^k = QD^kQ^{-1}$$
 for all $k = 1, 2, 3, ...$

In fact, once we have established that

$$A^{k-1} = QD^{k-1}Q^{-1},$$

we compute, using the associativity of the matrix product,

$$A^{k} = AA^{k-1}$$

= $(QDQ^{-1})(QD^{k-1}Q^{-1})$
= $QD(Q^{-1}Q)D^{k-1}Q^{-1}$
= $QDID^{k-1}Q^{-1}$
= $QD^{k}Q^{-1}$.

Thus, we may compute A^k as follows

$$A^{k} = QD^{k}Q^{-1}$$

$$= \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{pmatrix}^{k} \frac{1}{5} \begin{pmatrix} 3 & -2 \\ 1 & 1 \end{pmatrix}$$

$$= \frac{1}{5} \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} \lambda_{1}^{k} & 0 \\ 0 & \lambda_{2}^{k} \end{pmatrix} \begin{pmatrix} 3 & -2 \\ 1 & 1 \end{pmatrix}.$$

Substituting for the values of λ_1 and λ_2 we then get that

$$A^{k} = \frac{1}{5} \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 1/6^{k} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & -2 \\ 1 & 1 \end{pmatrix},$$

from which we get that

$$A^{k} = \frac{1}{5} \begin{pmatrix} (3/6^{k}) + 2 & -(2/6^{k}) + 2 \\ -(3/6^{k}) + 3 & (2/6^{k}) + 3 \end{pmatrix}, \text{ for all } k.$$

Observe that, as $k \to \infty$,

$$A^k \to \left(\begin{array}{cc} 2/5 & 2/5\\ 3/5 & 3/5 \end{array}\right).$$

13. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Let $S = \{v_1, v_2, \ldots, v_k\}$ be a set of vectors in \mathbb{R}^n .

(a) Suppose that the set of vectors $\{T(v_1), T(v_2), \ldots, T(v_k)\}$ is a linearly independent set of vectors in \mathbb{R}^m . Prove that the set S must be a linearly independent set in \mathbb{R}^n .

Solution: Assume that $\{T(v_1), T(v_2), \ldots, T(v_k)\}$ is linearly independent and consider the equation

$$c_1 v_1 + c_2 v_2 + \dots + c_k v_k = \mathbf{0}.$$
 (17)

Apply the function T to both sides of (17) to get

$$T(c_1v_1+c_2v_2+\cdots+c_kv_k)=T(\mathbf{0}),$$

or

$$c_1 T(v_1) + c_2 T(v_2) + \dots + c_k T(v_k) = \mathbf{0},$$
 (18)

where we have used the linearity of T.

It follows from (18) and the assumption that $\{T(v_1), T(v_2), \ldots, T(v_k)\}$ is linearly independent that

$$c_1 = c_2 = \cdots = c_k = 0.$$

Hence, the only solution of the equation in (17) is the trivial solution; consequently, the set $\{v_1, v_2, \ldots, v_k\}$ is linearly independent.

(b) Is the converse of the statement in part (a) true? If not, produce a counter– example to show that the converse is generally false.

Solution: It is not true in general that the image, $\{T(v_1), T(v_2), \ldots, T(v_k)\}$, of a linearly independent set $\{v_1, v_2, \ldots, v_k\}$ in \mathbb{R}^n under a linear $T : \mathbb{R}^n \to \mathbb{R}^m$ is linearly independent. To see why this is the case, consider the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$T\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}x\\0\end{pmatrix}, \quad \text{for all } \begin{pmatrix}x\\y\end{pmatrix} \in \mathbb{R}^2$$

Observe that the linearly independent set $\{e_1, e_2\}$, the standard basis in \mathbb{R}^2 , gets mapped to the set

$$\{T(e_1), T(e_2)\} = \{e_1, \mathbf{0}\}\$$

which is linearly dependent, since the zero vector is in the set.

14. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ denote a linear transformation. Let W denote the null space, \mathcal{N}_T , of T. Assume that W has dimension k < n. Let $\{w_1, w_2, \ldots, w_k\}$ be a basis for W and $\{w_1, w_2, \ldots, w_k, v_1, v_2, \ldots, v_{n-k}\}$ be a basis for \mathbb{R}^n . Prove that that the set $\{T(v_1), T(v_2), \ldots, T(v_{n-k})\}$ is a basis for \mathcal{I}_T , the image of T. Deduce that

$$\dim(\mathcal{N}_T) + \dim(\mathcal{I}_T) = n.$$

Solution: Assume that $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation. Let $W = \mathcal{N}_T$, null space, and assume that $\dim(W) = k < n$. Let $\{w_1, w_2, \ldots, w_k\}$ be a basis for W and $\{w_1, w_2, \ldots, w_k, v_1, v_2, \ldots, v_{n-k}\}$ be a basis for \mathbb{R}^n . We show that the set

$$\{T(v_1), T(v_2), \ldots, T(v_{n-k})\}$$

is a basis for the image of T, \mathcal{I}_T .

We first show that $\{T(v_1), T(v_2), \ldots, T(v_{n-k})\}$ spans \mathcal{I}_T . Let $y \in \mathcal{I}_T$; then,

$$y = T(x)$$
, for some $x \in \mathbb{R}^n$. (19)

Since $\{w_1, w_2, \ldots, w_k, v_1, v_2, \ldots, v_{n-k}\}$ be a basis for \mathbb{R}^n , there exists scalars $d_1, d_2, \ldots, d_k, c_1, c_2, \ldots, c_{n-k}$ such that

$$x = d_1 w_1 + d_2 w_2 + \dots + d_k w_k + c_1 v_1 + \dots + c_{n-k} v_{n-k}.$$
 (20)

It follows from (19), (20) and the assumption that T is linear that

$$y = d_1 T(w_1) + d_2 T(w_2) + \dots + d_k T(w_k) + c_1 T(v_1) + \dots + c_{n-k} T(v_{n-k}).$$
(21)

Next, use the fact that w_1, w_2, \ldots, w_k are in the null space of T to obtain from (21) that

$$y = c_1 T(v_1) + \dots + c_{n-k} T(v_{n-k}),$$

which shows that $y \in \text{span}(\{T(v_1), T(v_2), \dots, T(v_{n-k})\})$. We have therefore shown that

$$\mathcal{I}_T \subseteq \operatorname{span}(\{T(v_1), T(v_2), \dots, T(v_{n-k})\}).$$
(22)

In order to show the reverse inclusion to that in (22), let

$$y \in \text{span}(\{T(v_1), T(v_2), \dots, T(v_{n-k})\});$$

then,

$$y = c_1 T(v_1) + c_2 T(v_2) + \dots + c_{n-k} T(v_{n-k}),$$
(23)

for some scalars $c_1, c_2, \ldots, c_{n-k}$. Next, use the assumption that T is linear to get from (23) that

 $y = T(c_1v_1 + c_2v_2 + \dots + c_{n-k}v_{n-k}),$

which shows that $y \in \mathcal{I}_T$. Thus,

$$\operatorname{span}(\{T(v_1), T(v_2), \dots, T(v_{n-k})\}) \subseteq \mathcal{I}_T.$$
(24)

Combining (22) and (24) yields

$$\mathcal{I}_T = \operatorname{span}(\{T(v_1), T(v_2), \dots, T(v_{n-k})\})$$

Hence, $\{T(v_1), T(v_2), \ldots, T(v_{n-k})\}$ spans \mathcal{I}_T .

Next, we shoe that $\{T(v_1), T(v_2), \ldots, T(v_{n-k})\}$ is linearly independent. To see why this is so, let $c_1, c_2, \ldots, c_{n-k}$ be scalars such that

$$c_1 T(v_1) + c_2 T(v_2) + \dots + c_{n-k} T(v_{n-k}) = \mathbf{0}.$$
 (25)

Using the assumption that T is linear, we can rewrite (25) as

$$T(c_1v_1 + c_2v_2 + \dots + c_{n-k}v_{n-k}) = \mathbf{0},$$

which shows that $c_1v_1+c_2v_2+\cdots+c_{n-k}v_{n-k} \in \mathcal{N}_T$. Thus, since $\{w_1, w_2, \ldots, w_k\}$ is a basis for \mathcal{N}_T ,

$$c_1v_1 + c_2v_2 + \dots + c_{n-k}v_{n-k} = d_1w_2 + d_2w_k + \dots + d_kw_k,$$
(26)

for some scalars d_1, d_2, \ldots, d_k . We can rewrite (26) as

$$(-d_1)w_2 + (-d_2)w_k + \dots + (-d_k)w_k + c_1v_1 + c_2v_2 + \dots + c_{n-k}v_{n-k} = \mathbf{0}, \quad (27)$$

so that, since $\{w_1, w_2, \ldots, w_k, v_1, v_2, \ldots, v_{n-k}\}$ is a basis for \mathbb{R}^n , it follows from (27) that

$$-d_1 = -d_2 = \dots = -d_k = c_1 = c_2 = \dots = c_{n-k} = 0.$$
 (28)

In particular, we get from (28) that

$$c_1 = c_2 = \dots = c_{n-k} = 0. \tag{29}$$

We have shown that (25) implies (29); thus, the set $\{T(v_1), T(v_2), \ldots, T(v_{n-k})\}$ is linearly independent.

Hence $\{T(v_1), T(v_2), \ldots, T(v_{n-k})\}$ is a basis for \mathcal{I}_T , so that

$$\dim(\mathcal{I}_T) = n - k = n - \dim(\mathcal{N}_T),$$

from which we get

$$\dim(\mathcal{N}_T) + \dim(\mathcal{I}_T) = n,$$

which was to be shown.

15. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ denote a linear transformation. Prove that if λ is an eigenvalue of T, then λ^k is an eigenvalue of T^k for every positive integer k. If μ is an eigenvalue of T^k , is $\mu^{1/k}$ always and eigenvalue of T?

Solution: Let λ be an eigenvalue of $T : \mathbb{R}^n \to \mathbb{R}^n$. Then, there exists a nonzero vector, v, in \mathbb{R}^n such that

$$T(v) = \lambda v.$$

Applying the transformation, T, on both sides and using the fact that T is linear and that v is an eigenvector corresponding to λ , we obtain that

$$T^{2}(v) = T(\lambda v) = \lambda T(v) = \lambda \lambda v = \lambda^{2} v,$$

so that, since $v \neq 0$, λ^2 is an eigenvalue for T^2 .

We may now proceed by induction on k to show that

$$\lambda^k$$
, for all $k = 1, 2, 3, \ldots$,

is an eigenvalue of T^k . To do this, assume we have established that λ^{k-1} is an eigenvalue of T^{k-1} and that v is an eigenvector for T corresponding to the eigenvalue λ , so that v is also an eigenvector of T^{k-1} corresponding to λ^{k-1} . We then have that

$$T^{k-1}(v) = \lambda^{k-1}v.$$

Thus, applying the transformation, T, on both sides and using the fact that T is linear and that v is an eigenvector corresponding to λ , we obtain that

$$T^{k}(v) = T(T^{k-1}v) = T(\lambda^{k-1}v) = \lambda^{k-1}T(v) = \lambda^{k-1}\lambda v = \lambda^{k}v,$$

so that, since $v \neq 0$, λ^k is an eigenvalue for T^k .

Next, consider the function $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by rotation in the counterclockwise sense by 90° or $\pi/2$ radians; that is,

$$T\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix}$$
 for all $\begin{pmatrix} x\\ y \end{pmatrix} \in \mathbb{R}^2$.

Then, $T^2 \colon \mathbb{R}^2 \to \mathbb{R}^2$ is given by

$$T^2\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}-1 & 0\\0 & -1\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}$$
 for all $\begin{pmatrix}x\\y\end{pmatrix} \in \mathbb{R}^2$,

which has $\mu = -1$ as the only eigenvalue. Observe that T has no real eigenvalues, so $\mu^{1/2}$ cannot be a (real) eigenvalue of T.

16. Let $\mathcal{E} = \{e_1, e_2\}$ denote the standard basis in \mathbb{R}^2 , and let $f \colon \mathbb{R}^2 \to \mathbb{R}^2$ be a linear function satisfying: $f(e_1) = e_1 + e_2$ and $f(e_2) = 2e_1 - e_2$.

Give the matrix representations for f and $f \circ f$ relative to \mathcal{E} .

Solution: Observe that

$$f(e_1) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 and $f(e_2) = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$.

It then follows that the matrix representation for f relative to \mathcal{E} is

$$M_f = \left(\begin{array}{cc} 1 & 2\\ 1 & -1 \end{array}\right).$$

The matrix representation of $f \circ f$ is the product $M_f M_f$, or

$$M_{f \circ f} = \begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}.$$

17. A function $f : \mathbb{R}^2 \to \mathbb{R}^2$ is defined as follows: Each vector $v \in \mathbb{R}^2$ is reflected across the *y*-axis, and then doubled in length to yield f(v).

Verify that f is linear and determine the matrix representation, M_f , for f relative to the standard basis in \mathbb{R}^2 .

Solution: The function f is the composition of the reflection $R \colon \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$R\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix}, \text{ for all } \begin{pmatrix} x\\ y \end{pmatrix} \in \mathbb{R}^2,$$

and the function $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ given by T(w) = 2w for all $w \in \mathbb{R}^2$ or, in matrix form,

$$T\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 2 & 0\\ 0 & 2 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix}, \text{ for all } \begin{pmatrix} x\\ y \end{pmatrix} \in \mathbb{R}^2.$$

Note that both R and T are linear since they are both defined in terms of multiplication by a matrix. It then follows that $f = T \circ R$ is linear and its matrix representation, M_f , relative to the standard basis in \mathbb{R}^2 is

$$M_f = M_T M_R = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 0 \\ 0 & 2 \end{pmatrix}$$

18. Find a 2 × 2 matrix A such that the function $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by T(v) = Av maps the coordinates of any vector, relative to the standard basis in \mathbb{R}^2 , to its coordinates relative the basis $\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$. Solution: Denote the vectors in \mathcal{B} by v_1 and v_2 , respectively, so that

$$v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 and $v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

We want the function T to satisfy

$$T(v) = [v]_{\mathcal{B}} \tag{30}$$

for every $v \in \mathbb{R}^2$ given in terms of the standard basis in \mathbb{R}^2 .

We can attain (30) by means of the change of basis matrix $[id]_{\mathcal{E}}^{\mathcal{B}}$, where

$$\mathcal{E} = \{e_1, e_2\}$$

is the standard basis in \mathbb{R}^2 . Indeed, using the expression

$$[id(v)]_{\mathcal{B}} = [id]_{\mathcal{E}}^{\mathcal{B}}[v]_{\mathcal{E}},$$

we obtain

$$[v]_{\mathcal{B}} = [id]_{\mathcal{E}}^{\mathcal{B}} v.$$
(31)

The matrix $[id]_{\mathcal{E}}^{\mathcal{B}}$ in (31) is the inverse of the matrix $[id]_{\mathcal{B}}^{\mathcal{E}}$ given by

$$[id]_{\mathcal{B}}^{\mathcal{E}} = \begin{bmatrix} v_1 & v_2 \end{bmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

We therefore have that

$$[id]_{\mathcal{E}}^{\mathcal{B}} = \frac{1}{-2} \begin{pmatrix} -1 & -1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{pmatrix}.$$
 (32)

Combining (30), (31) and (32) we get

$$T(v) = Av$$

where A is the matrix

$$A = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{pmatrix}.$$

- 19. Let u_1 and u_2 denote a unit vector in \mathbb{R}^3 that are orthogonal to each other; i.e., $\langle u_1, u_2 \rangle = 0$, where $\langle \cdot, \cdot \rangle$ denotes the Euclidean inner product in \mathbb{R}^3 . Define $f \colon \mathbb{R}^3 \to \mathbb{R}^3$ by $f(v) = \langle v, u_1 \rangle u_1 + \langle v, u_2 \rangle u_2$ for all $v \in \mathbb{R}^3$.
 - (a) Use the Dimension Theorem to compute $\dim(\mathcal{N}_f)$. Solution: We first note that

$$\mathcal{I}_f = \operatorname{span}(\{u_1, u_2\}). \tag{33}$$

To see why the assertion in (33) is true, let $w \in \mathcal{I}_f$; so that,

$$w = f(v) = \langle v, u_1 \rangle u_1 + \langle v, u_2 \rangle u_2,$$

for some $v \in \mathbb{R}^3$; thus, w is a linear combination of u_1 and u_2 . We have therefore shown that

$$\mathcal{I}_f \subseteq \operatorname{span}(\{u_1, u_2\}). \tag{34}$$

In order to show the other inclusion, note that

$$f(u_1) = \langle u_1, u_1 \rangle u_1 + \langle u_1, u_2 \rangle u_2 = u_1,$$

since $\langle u_1, u_2 \rangle = 0$ and u_1 is a unit vector. Thus, $u_1 = f(u_1)$; so that $u_1 \in \mathcal{I}_f$. Similarly, $u_2 \in \mathcal{I}_f$. We then have that

$$\{u_1, u_2\} \subseteq \mathcal{I}_f,$$

from which we get that

$$\operatorname{span}(\{u_1, u_2\}) \subseteq \mathcal{I}_f,\tag{35}$$

since \mathcal{I}_f is a subspace of \mathbb{R}^3 and span($\{u_1, u_2\}$) is the smallest subspace of \mathbb{R}^3 that contains $\{u_1, u_2\}$. Combining (34) and (35) yields (33).

Next, we show that $\{u_1, u_2\}$ is linearly independent. Consider the equation

$$c_1 u_1 + c_2 u_2 = \mathbf{0}. \tag{36}$$

Take the inner product with u_1 on both sides of (36) to get

$$\langle c_1 u_1 + c_2 u_2, u_1 \rangle = \langle \mathbf{0}, u_1 \rangle,$$

or, using the bi-linearity of the inner product,

$$c_1\langle u_1, u_1 \rangle + c_2\langle u_2, u_1 \rangle = 0; \tag{37}$$

thus, since $\langle u_1, u_2 \rangle = 0$ and u_1 is a unit vector, it follows from (37) that $c_1 = 0$. Similarly, $c_2 = 0$. We therefore get that the equation in (36) has only the trivial solution. Therefore, the set $\{u_1, u_2\}$ is linearly independent. Hence, in view of (33), $\{u_1, u_2\}$ is a basis for \mathcal{I}_f .

It then follows that $\dim(\mathcal{I}_f) = 2$. Hence, by the Dimension Theorem for Linear Transformations,

$$\dim(\mathcal{N}_f) + \dim(\mathcal{I}_f) = 3,$$

we obtain that

$$\dim(\mathcal{N}_f) = 1$$

(b) Show that v - f(v) is orthogonal to every vector w in the image of f. **Solution:** In view of (33) in part (a) of this problem, it suffices to show that

$$\langle v - f(v), u_1 \rangle = 0$$
 and $\langle v - f(v), u_2 \rangle = 0.$ (38)

Indeed, assume that (38) has been established. Take $w \in \mathcal{I}_f$; then,

$$w = c_1 u_1 + c_2 u_2,$$

for some scalars c_1 and c_2 , by virtue of (33). Then,

$$\langle v - f(v), w \rangle = \langle v - f(v), c_1 u_1 + c_2 u_2 \rangle$$

= $c_1 \langle v - f(v), u_1 \rangle + c_2 \langle v - f(v), u_2 \rangle$

by the bi–linearity of the Euclidean inner product; so that, using (38),

$$\langle v - f(v), w \rangle = 0$$
, for all $w \in \mathcal{I}_f$

In order to prove the claims in (38), compute

$$\begin{aligned} \langle v - f(v), u_1 \rangle &= \langle v, u_1 \rangle - \langle f(v), u_1 \rangle \\ &= \langle v, u_1 \rangle - \langle \langle v, u_1 \rangle u_1 + \langle v, u_2 \rangle u_2, u_1 \rangle \\ &= \langle v, u_1 \rangle - \langle v, u_1 \rangle \langle u_1, u_1 \rangle + \langle v, u_2 \rangle \langle u_2, u_1 \rangle, \end{aligned}$$

where we have used the bi-linearity of the Euclidean inner product. Thus, since $\langle u_1, u_2 \rangle = 0$ and u_1 is a unit vector,

$$\langle v - f(v), u_1 \rangle = \langle v, u_1 \rangle - \langle v, u_1 \rangle = 0.$$

Similarly,

$$\langle v - f(v), u_2 \rangle = \langle v, u_2 \rangle - \langle v, u_2 \rangle = 0.$$

(c) Show that f(v) gives the point in the plane spanned by u_1 and u_2 that is the closest to v in \mathbb{R}^3 .

Solution: Let $v \in \mathbb{R}^3$ be given. Any point in span $(\{u_1, u_2\})$ is of the form $xu_1 + yu_2$, where x and y are scalars. Define a function of two variables

$$g(x,y) = \|v - xu_1 - yu_2\|^2, \quad \text{for } x \in \mathbb{R} \text{ and } y \in \mathbb{R}.$$
(39)

Thus, g(x, y) in (39) gives the square of the distance from v to a point in the plane span($\{u_1, u_2\}$) with coordinates x and y relative to the basis $\mathcal{B} = \text{span}(\{u_1, u_2\})$ for the plane. We would like to find the coordinates of the point in the plane spanned by u_1 and u_2 for which g(x, y) is the smallest possible.

Use the definition of the Euclidean norm and the properties of the Euclidean inner product to rewrite (39) as follows:

$$g(x,y) = \langle v - xu_1 - yu_2, v - xu_1 - yu_2 \rangle$$

= $\langle v, v \rangle - x \langle v, u_1 \rangle - y \langle v, u_2 \rangle$
 $-x \langle u_1, v \rangle + x^2 \langle u_1, u_1 \rangle + xy \langle u_1, u_2 \rangle$
 $-y \langle u_2, v \rangle + xy \langle u_2, u_1 \rangle y^2 \langle u_2, u_2 \rangle;$

so that, using the assumptions that u_1 and u_2 are unit vectors, and $\langle u_1, u_2 \rangle = 0$,

$$g(x,y) = x^{2} + y^{2} - 2x\langle v, u_{1} \rangle - 2y\langle v, u_{2} \rangle + ||v||^{2},$$
(40)

for $x \in \mathbb{R}$ and $y \in \mathbb{R}$.

Completing the squares in x and in y for the expression for g(x, y) in (40) yields

$$g(x,y) = (x - \langle v, u_1 \rangle)^2 + (y - \langle v, u_2 \rangle)^2 + ||v||^2 - (\langle v, u_1 \rangle)^2 - (\langle v, u_2 \rangle)^2,$$
(41)

for $x \in \mathbb{R}$ and $y \in \mathbb{R}$.

Observe that q(x, y) in (41) is the smallest possible when

$$x = \langle v, u_1 \rangle$$
 and $y = \langle v, u_2 \rangle$.

We therefore get that the point in span($\{u_1, u_2\}$) that is the closest to v is

$$\langle v, u_1 \rangle u_1 + \langle v, u_2 \rangle u_2,$$

which is the definition of f(v).