Solutions to Review Problems for Final Exam

1. Let W be a subspace of \mathbb{R}^{n}. Prove that $\operatorname{span}(W)=W$.

Proof: Assume that W is a subspace of \mathbb{R}^{n}. Then, $\operatorname{since} \operatorname{span}(W)$ is the smallest subspace of \mathbb{R}^{n} that contains W, it follows that

$$
\begin{equation*}
W \subseteq \operatorname{span}(W) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{span}(W) \subseteq W \tag{2}
\end{equation*}
$$

The inclusion in (2) follows from the fact that $W \subseteq W$ and the assumption that W is a subspace. Combining (1) and (2) yields the equality

$$
\operatorname{span}(W)=W
$$

2. Let S be linearly independent subset of \mathbb{R}^{n}. Suppose that $v \notin \operatorname{span}(S)$. Show that the set $S \cup\{v\}$ is linearly independent.

Proof: Assume that S is linearly independent subset of \mathbb{R}^{n} and that v is a vector in \mathbb{R}^{n} with

$$
\begin{equation*}
v \notin \operatorname{span}(S) . \tag{3}
\end{equation*}
$$

Assume that $c_{1}, c_{2}, \ldots, c_{k}$ and c solve the equation

$$
\begin{equation*}
c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{k} v_{k}+c v=\mathbf{0} \tag{4}
\end{equation*}
$$

where $v_{1}, v_{2}, \ldots, v_{k} \in S$.
We first see that $c=0$ in (4); otherwise we can solve for v in (4) to obtain

$$
v=-\frac{c_{1}}{c} v_{1}-\frac{c_{2}}{c} v_{2}-\cdots-\frac{c_{k}}{c} v_{k}
$$

which shows that $v \in \operatorname{span}(S)$, and this is in direct contradiction with (3). Hence,

$$
\begin{equation*}
c=0 \tag{5}
\end{equation*}
$$

and, substituting into (4),

$$
\begin{equation*}
c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{k} v_{k}=\mathbf{0} \tag{6}
\end{equation*}
$$

Next, since the vectors $v_{1}, v_{2}, \ldots, v_{k}$ are in S and S is linearly independent, it follows from (6) that

$$
\begin{equation*}
c_{1}=c_{2}=\cdots=c_{k}=0 \tag{7}
\end{equation*}
$$

Combining (5) and (6) we see that (4) implies that

$$
c_{1}=c_{2}=\cdots=c_{k}=c=0 ;
$$

hence, $S \cup\{v\}$ is linearly independent.
3. Let W be a subspace of \mathbb{R}^{n} with dimension $k<n$. Let $\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ be a basis for W. Prove that there exist vectors $v_{1}, v_{2}, \ldots, v_{n-k}$ in \mathbb{R}^{n} such that the set $\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{1}, v_{2}, \ldots, v_{n-k}\right\}$ is a basis for \mathbb{R}^{n}.

Proof: Assume that W is a subspace of \mathbb{R}^{n} with basis $\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$; so that $\operatorname{dim}(W)=k$. Assume also that $k<n$. Then, there exists $v_{1} \in \mathbb{R}^{n}$ such that $v_{1} \notin \operatorname{span}\left(\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}\right)$; otherwise, $\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ would span \mathbb{R}^{n} and it would therefore be a basis for \mathbb{R}^{n}, since it is also linearly independent; but this is impossible because $k<n$. It therefore follows from Problem 2 above that the set $\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{1}\right\}$ is linearly independent.
If $\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{1}\right\}$ spans \mathbb{R}^{n}, it would be basis for \mathbb{R}^{n}, so that $k+1=n$ and the proof of the statement is done. On the other hand, if $\operatorname{span}\left(\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{1}\right\}\right) \neq$ \mathbb{R}^{n}, there exists $v_{2} \in \mathbb{R}^{n}$ such that

$$
v_{2} \notin \operatorname{span}\left(\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{1}\right\}\right)
$$

Consequently, the set $\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{1}, v_{2}\right\}$ is linearly independent, by Problem 2 above. If $\operatorname{span}\left(\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{1}, v_{2}\right\}\right)=\mathbb{R}^{n}$ we are done and $k+2=n$. If not, there exists $v_{3} \in \mathbb{R}^{n}$ such that

$$
v_{3} \notin \operatorname{span}\left(\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{1}, v_{2}\right\}\right)
$$

Continuing in this fashion, we obtain a set of vectors $v_{1}, v_{2}, \ldots, v_{\ell}$ in \mathbb{R}^{n} such that the set

$$
\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{1}, v_{2}, \ldots, v_{\ell}\right\}
$$

is linearly independent and

$$
\operatorname{span}\left(\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{1}, v_{2}, \ldots, v_{\ell}\right\}\right)=\mathbb{R}^{n}
$$

Hence, the set $\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{1}, v_{2}, \ldots, v_{\ell}\right\}$ is a basis for \mathbb{R}^{n}; so that

$$
k+\ell=n
$$

from which we get that $\ell=n-k$, and the proof of the assertion is now complete.
4. Let A be an $m \times n$ matrix and $b \in \mathbb{R}^{m}$. Prove that if $A x=b$ has a solution x in \mathbb{R}^{n}, then $\langle b, v\rangle=0$ for every v is the null space of A^{T}.
Solution: Let x be a solution of $A x=b$ and $v \in \mathcal{N}_{A^{T}}$. Then, $A^{T} v=\mathbf{0}$ and

$$
\begin{aligned}
\langle b, v\rangle & =\langle A x, v\rangle \\
& =(A x)^{T} v \\
& =x^{T} A^{T} v \\
& =x^{T} \mathbf{0} \\
& =0 .
\end{aligned}
$$

5. Let $R=\left(\begin{array}{lll}2 & -1 & 3\end{array}\right)$ and $C=\left(\begin{array}{r}-1 \\ 1 \\ -2\end{array}\right)$.

Compute the products $R C$ and $C R$.
Solution: Compute

$$
R C=\left(\begin{array}{lll}
2 & -1 & 3
\end{array}\right)\left(\begin{array}{r}
-1 \\
1 \\
-2
\end{array}\right)=-2-1-6=-9
$$

and

$$
C R=\left(\begin{array}{r}
-1 \\
1 \\
-2
\end{array}\right)\left(\begin{array}{lll}
2 & -1 & 3
\end{array}\right)=\left(\begin{array}{rrr}
-2 & 1 & -3 \\
2 & -1 & 3 \\
-4 & 2 & -6
\end{array}\right) .
$$

6. Let $A \in \mathbb{M}(m, n)$ and write $A=\left(\begin{array}{c}R_{1} \\ R_{2} \\ \vdots \\ R_{m}\end{array}\right)$, where $R_{1}, R_{2}, \ldots, R_{m}$ denote the rows of A. Define \mathcal{R}_{A}^{\perp} to be the set

$$
\mathcal{R}_{A}^{\perp}=\left\{w \in \mathbb{R}^{n} \mid R_{i} w=0 \text { for all } i=1,2, \ldots, m\right\}
$$

that is, \mathcal{R}_{A}^{\perp} is the set of vectors in \mathbb{R}^{n} which are orthogonal to the vectors $R_{1}^{T}, R_{2}^{T}, \ldots, R_{m}^{T}$ in \mathbb{R}^{n}.
(a) Prove that \mathcal{R}_{A}^{\perp} is a subspace of \mathbb{R}^{n}.

Solution: First, observe that $R_{i} \mathbf{0}=0$ for all $i=1,2, \ldots, m$, so that $\mathbf{0} \in \mathcal{R}_{A}^{\perp}$ and so $\mathcal{R}_{A}^{\perp} \neq \emptyset$.
Next, let w_{1} and w_{2} be vectors in \mathcal{R}_{A}^{\perp}. Then,

$$
\begin{equation*}
R_{i} w_{1}=0 \quad \text { for all } i=1,2, \ldots, m \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{i} w_{2}=0 \quad \text { for all } i=1,2, \ldots, m \tag{9}
\end{equation*}
$$

Thus, adding the equations in (8) and (9), and using the distributive property of matrix multiplication, we get

$$
R_{i}\left(w_{1}+w_{2}\right)=0 \quad \text { for all } i=1,2, \ldots, m
$$

which shows that $w_{1}+w_{2} \in \mathcal{R}_{A}^{\perp}$. Hence, \mathcal{R}_{A}^{\perp} is closed under vector addition. Next, let $w \in \mathcal{R}_{A}^{\perp}$ and c be a scalar. Then,

$$
\begin{equation*}
R_{i} w=0 \quad \text { for all } i=1,2, \ldots, m \tag{10}
\end{equation*}
$$

Thus, multiplying the equation in (10),

$$
c R_{i} w=0 \quad \text { for all } i=1,2, \ldots, m
$$

from which we get

$$
R_{i}(c w)=0 \quad \text { for all } i=1,2, \ldots, m,
$$

by the linearity of the Euclidean inner product. Hence, $c w \in \mathcal{R} \frac{\perp}{A}$, and we have therefore shown that \mathcal{R}_{A}^{\perp} is closed under scalar multiplication.
We have shown that \mathcal{R}_{A}^{\perp} is nonempty and closed under vector addition and scalar multiplication. Hence, \mathcal{R}_{A}^{\perp} is subspace of \mathbb{R}^{n}.
(b) Prove that $\mathcal{R}_{A}^{\perp}=\mathcal{N}_{A}$.

Proof: The following chain of equivalences is true:

$$
\begin{gathered}
w \in \mathcal{R}_{A}^{\perp} \quad \text { iff } \quad R_{i} w=0 \text { for all } i=1,2, \ldots, m \\
\\
\text { iff }\left(\begin{array}{c}
R_{1} w \\
R_{2} w \\
\vdots \\
R_{m} v
\end{array}\right)=\mathbf{0} \\
\text { iff } A w=\mathbf{0} \\
\text { iff } w \in \mathcal{N}_{A} .
\end{gathered}
$$

Consequently, $\mathcal{R}_{A}^{\perp}=\mathcal{N}_{A}$.
(c) Denote by \mathcal{R}_{A} the span of the rows of the matrix A. Let v denote a vector in \mathbb{R}^{n}. Prove that if $v \in \mathcal{N}_{A}$ and $v^{T} \in \mathcal{R}_{A}$, then $v=\mathbf{0}$.

Proof: Assume that $v \in \mathbb{R}^{n}$ is in \mathcal{N}_{A} and its transpose, v^{T}, is in the rowspace of A, \mathcal{R}_{A}. By the result of part (b), $v \in \mathcal{R}_{A}^{\perp}$; that is,

$$
\begin{equation*}
R_{i} v=0 \quad \text { for } i=1,2, \ldots, m \tag{11}
\end{equation*}
$$

Now, since $v^{T} \in \mathcal{R}_{A}$, there exist scalars $c_{1}, c_{2}, \ldots, c_{m}$ such that

$$
\begin{equation*}
v^{T}=c_{1} R_{1}+c_{2} R_{2}+\cdots+c_{m} R_{m} \tag{12}
\end{equation*}
$$

Multiplying both sides of (12) on the right by v we obtain

$$
v^{T} v=\left(c_{1} R_{1}+c_{2} R_{2}+\cdots+c_{m} R_{m}\right) v
$$

or

$$
\begin{equation*}
\|v\|^{2}=c_{1} R_{1} v+c_{2} R_{2} v+\cdots+c_{m} R_{m} v \tag{13}
\end{equation*}
$$

where we have used the distributive property of matrix multiplication. Combining (11) and (13) we see that $\|v\|=0$, from which we get that $v=0$.
7. Let B be an $n \times n$ matrix satisfying $B^{3}=0$ and put $A=I+B$, where I denotes the $n \times n$ identity matrix. Prove that A is invertible and compute A^{-1} in terms of I, B and B^{2}.
Solution: Set $Q=c_{1} I+c_{2} B+c_{3} B^{2}$ and look for scalars c_{1}, c_{2} and c_{3} such that $A Q=I$.

Now,

$$
\begin{aligned}
A Q & =(I+B) Q \\
& =c_{1} I+c_{2} B+c_{3} B^{2}+B\left(c_{1} I+c_{2} B+c_{3} B^{2}\right) \\
& =c_{1} I+c_{2} B+c_{3} B^{2}+c_{1} B+c_{2} B^{2}+c_{3} B^{3} \\
& =c_{1} I+\left(c_{1}+c_{2}\right) B+\left(c_{2}+c_{3}\right) B^{2},
\end{aligned}
$$

where we have used the assumption that $B^{3}=O$. Thus, $A Q=I$ if and only if

$$
\begin{cases}c_{1} & =1 \\ c_{1}+c_{2} & =0 \\ c_{2}+c_{3} & =0\end{cases}
$$

Solving this system we get $c_{1}=1, c_{2}=-1$ and $c_{3}=1$. Hence, if $Q=I-B+B^{2}$, then Q is a right-inverse of $A=I+B$ and therefore $A=I+B$ is invertible and $A^{-1}=I-B+B^{2}$.
8. Let $A, B \in \mathbb{M}(2,2)$. Show that $\operatorname{det}(A B)=\operatorname{det}(B A)$.

Proof: Compute

$$
\begin{aligned}
\operatorname{det}(A B) & =\operatorname{det}(A) \operatorname{det}(B) \\
& =\operatorname{det}(B) \operatorname{det}(A)
\end{aligned}
$$

since multiplication of real numbers is commutative. Hence,

$$
\operatorname{det}(A B)=\operatorname{det}(B A)
$$

which was to be shown.
9. Let $A, B \in \mathbb{M}(2,2)$. Verify that $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$.

Solution: Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Then, $A^{T}=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ and, therefore,

$$
\operatorname{det}\left(A^{T}\right)=a d-b c=\operatorname{det}(A)
$$

which was to be shown.
10. Given an $n \times n$ matrix $A=\left[a_{i j}\right]$, the trace of A, denoted $\operatorname{tr}(A)$, is the sum of the entries along the main diagonal of A; that is $\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}$.
Let A and B denote $n \times n$ matrices. Show that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.
Proof: Write $A=\left[a_{i j}\right]$ and $B=\left[b_{j k}\right]$ for $i=1,2, \ldots, n, j=1,2, \ldots, n$ and $k=1,2, \ldots, n$. Then, $A B=\left[c_{i k}\right]$, where

$$
\begin{equation*}
c_{i k}=\sum_{j=1}^{n} a_{i j} b_{j k} \tag{14}
\end{equation*}
$$

Consequently,

$$
\begin{align*}
\operatorname{tr}(A B) & =\sum_{i=1}^{n} c_{i i} \tag{15}\\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} b_{j i},
\end{align*}
$$

where we have used (14).
Interchanging the order of summation in (15) we obtain

$$
\begin{aligned}
\operatorname{tr}(A B) & =\sum_{j=1}^{n} \sum_{i=1}^{n} a_{i j} b_{j i} \\
& =\sum_{j=1}^{n} \sum_{i=1}^{n} b_{j i} a_{i j} \\
& =\sum_{j=1}^{n} d_{j j},
\end{aligned}
$$

where

$$
d_{j j}=\sum_{i=1}^{n} b_{j i} a_{i j}, \quad \text { for } j=1,2, \ldots, n,
$$

are the entries along the main diagonal of the matrix product $B A$. Hence, we have shown that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.
11. Let A and B be $n \times n$ matrices such that $B=Q^{-1} A Q$ for some invertible $n \times n$ matrix Q.
Prove that A and B have the same determinant and the same trace.
Solution: Use the result of Problem 8 to compute

$$
\begin{aligned}
\operatorname{det}(B) & =\operatorname{det}\left(Q^{-1} A Q\right) \\
& =\operatorname{det}\left(Q Q^{-1} A\right) \\
& =\operatorname{det}(I A) \\
& =\operatorname{det}(A)
\end{aligned}
$$

Similarly, using the result of Problem 10,

$$
\begin{aligned}
\operatorname{tr}(B) & =\operatorname{tr}\left(Q^{-1} A Q\right) \\
& =\operatorname{tr}\left(Q Q^{-1} A\right) \\
& =\operatorname{tr}(I A) \\
& =\operatorname{tr}(A)
\end{aligned}
$$

12. Let $A=\left(\begin{array}{ll}1 / 2 & 1 / 3 \\ 1 / 2 & 2 / 3\end{array}\right)$.
(a) Find a basis $\mathcal{B}=\left\{v_{1}, v_{2}\right\}$ for \mathbb{R}^{2} made up of eigenvectors of A.

Solution: First, we look for values of λ such that the system

$$
\begin{equation*}
(A-\lambda I) v=\mathbf{0} \tag{16}
\end{equation*}
$$

has nontrivial solutions in \mathbb{R}^{2}. This is the case if and only if

$$
\operatorname{det}(A-\lambda I)=0
$$

which occurs if and only if

$$
\lambda^{2}-\frac{7}{6} \lambda+\frac{1}{6}=0
$$

or

$$
(\lambda-1)\left(\lambda-\frac{1}{6}\right)=0
$$

We then get that

$$
\lambda_{1}=\frac{1}{6} \quad \text { and } \quad \lambda_{2}=1
$$

are eigenvalues of A.
To find an eigenvector corresponding to the eigenvalue λ_{1}, we solve the system in (16) for $\lambda=\lambda_{1}$. In this case, the system can be reduced to the equation

$$
x_{1}+x_{2}=0
$$

which has solutions

$$
\binom{x_{1}}{x_{2}}=t\binom{1}{-1}
$$

where t is arbitrary. We can therefore take

$$
v_{1}=\binom{1}{-1}
$$

as an eigenvector corresponding to $\lambda=\frac{1}{6}$.
Similar calculations for $\lambda=\lambda_{2}=1$ lead to the equation

$$
3 x_{1}-2 x_{2}=0,
$$

which has solutions

$$
\binom{x_{1}}{x_{2}}=t\binom{2}{3}
$$

where t is arbitrary. Thus, in this case, we obtain the eigenvector

$$
v_{2}=\binom{2}{3} .
$$

Since v_{1} and v_{2} are linearly independent, they constitute a basis for \mathbb{R}^{2} because $\operatorname{dim}\left(\mathbb{R}^{2}\right)=2$.
(b) Let Q be the 2×2 matrix $Q=\left[\begin{array}{ll}v_{1} & v_{2}\end{array}\right]$, where $\left\{v_{1}, v_{2}\right\}$ is the basis of eigenvectors found in (a) above. Verify that Q is invertible and compute $Q^{-1} A Q$.
Solution: $Q=\left(\begin{array}{rr}1 & 2 \\ -1 & 3\end{array}\right)$, so that $\operatorname{det}(Q)=3+2=5 \neq 0$. Hence Q is invertible and

$$
Q^{-1}=\frac{1}{5}\left(\begin{array}{rr}
3 & -2 \\
1 & 1
\end{array}\right) .
$$

Next, compute

$$
\begin{aligned}
Q^{-1} A Q & =\frac{1}{5}\left(\begin{array}{rr}
3 & -2 \\
1 & 1
\end{array}\right)\left(\begin{array}{rr}
1 / 2 & 1 / 3 \\
1 / 2 & 2 / 3
\end{array}\right)\left(\begin{array}{rr}
1 & 2 \\
-1 & 3
\end{array}\right) \\
& =\frac{1}{5}\left(\begin{array}{rr}
3 & -2 \\
1 & 1
\end{array}\right)\left(\begin{array}{rr}
1 / 6 & 2 \\
-1 / 6 & 3
\end{array}\right) \\
& =\frac{1}{5}\left(\begin{array}{rr}
5 / 6 & 0 \\
0 & 5
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 / 6 & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) .
\end{aligned}
$$

Thus, $Q^{-1} A Q$ is a diagonal matrix with the eigenvalues of A as entries along the main diagonal.
(c) Use the result in part (b) above to find a formula for for computing A^{k} for every positive integer k. Can you say anything about $\lim _{k \rightarrow \infty} A^{k}$?

Solution: Let D denote the matrix $\left(\begin{array}{rr}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$. Then, from part (b) in this problem,

$$
Q^{-1} A Q=D
$$

Multiplying this equation by Q on the left and Q^{-1} on the right, we obtain that

$$
A=Q D Q^{-1}
$$

It then follows that

$$
\begin{aligned}
A^{2} & =\left(Q D Q^{-1}\right)\left(Q D Q^{-1}\right) \\
& =Q D\left(Q^{-1} Q\right) D Q^{-1} \\
& =Q D I D Q^{-1} \\
& =Q D^{2} Q^{-1}
\end{aligned}
$$

We may now proceed by induction on k to show that

$$
A^{k}=Q D^{k} Q^{-1} \quad \text { for all } k=1,2,3, \ldots
$$

In fact, once we have established that

$$
A^{k-1}=Q D^{k-1} Q^{-1}
$$

we compute, using the associativity of the matrix product,

$$
\begin{aligned}
A^{k} & =A A^{k-1} \\
& =\left(Q D Q^{-1}\right)\left(Q D^{k-1} Q^{-1}\right) \\
& =Q D\left(Q^{-1} Q\right) D^{k-1} Q^{-1} \\
& =Q D I D^{k-1} Q^{-1} \\
& =Q D^{k} Q^{-1}
\end{aligned}
$$

Thus, we may compute A^{k} as follows

$$
\begin{aligned}
A^{k} & =Q D^{k} Q^{-1} \\
& =\left(\begin{array}{rr}
1 & 2 \\
-1 & 3
\end{array}\right)\left(\begin{array}{rr}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)^{k} \frac{1}{5}\left(\begin{array}{cc}
3 & -2 \\
1 & 1
\end{array}\right) \\
& =\frac{1}{5}\left(\begin{array}{rr}
1 & 2 \\
-1 & 3
\end{array}\right)\left(\begin{array}{rr}
\lambda_{1}^{k} & 0 \\
0 & \lambda_{2}^{k}
\end{array}\right)\left(\begin{array}{cc}
3 & -2 \\
1 & 1
\end{array}\right) .
\end{aligned}
$$

Substituting for the values of λ_{1} and λ_{2} we then get that

$$
A^{k}=\frac{1}{5}\left(\begin{array}{rr}
1 & 2 \\
-1 & 3
\end{array}\right)\left(\begin{array}{cc}
1 / 6^{k} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
3 & -2 \\
1 & 1
\end{array}\right)
$$

from which we get that

$$
A^{k}=\frac{1}{5}\left(\begin{array}{rr}
\left(3 / 6^{k}\right)+2 & -\left(2 / 6^{k}\right)+2 \\
-\left(3 / 6^{k}\right)+3 & \left(2 / 6^{k}\right)+3
\end{array}\right), \quad \text { for all } k
$$

Observe that, as $k \rightarrow \infty$,

$$
A^{k} \rightarrow\left(\begin{array}{ll}
2 / 5 & 2 / 5 \\
3 / 5 & 3 / 5
\end{array}\right)
$$

13. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be a set of vectors in \mathbb{R}^{n}.
(a) Suppose that the set of vectors $\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{k}\right)\right\}$ is a linearly independent set of vectors in \mathbb{R}^{m}. Prove that the set S must be a linearly independent set in \mathbb{R}^{n}.
Solution: Assume that $\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{k}\right)\right\}$ is linearly independent and consider the equation

$$
\begin{equation*}
c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{k} v_{k}=\mathbf{0} \tag{17}
\end{equation*}
$$

Apply the function T to both sides of (17) to get

$$
T\left(c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{k} v_{k}\right)=T(\mathbf{0})
$$

or

$$
\begin{equation*}
c_{1} T\left(v_{1}\right)+c_{2} T\left(v_{2}\right)+\cdots+c_{k} T\left(v_{k}\right)=\mathbf{0} \tag{18}
\end{equation*}
$$

where we have used the linearity of T.
It follows from (18) and the assumption that $\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{k}\right)\right\}$ is linearly independent that

$$
c_{1}=c_{2}=\cdots=c_{k}=0
$$

Hence, the only solution of the equation in (17) is the trivial solution; consequently, the set $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is linearly independent.
(b) Is the converse of the statement in part (a) true? If not, produce a counterexample to show that the converse is generally false.
Solution: It is not true in general that the image, $\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{k}\right)\right\}$, of a linearly independent set $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ in \mathbb{R}^{n} under a linear $T: \mathbb{R}^{n} \rightarrow$ \mathbb{R}^{m} is linearly independent. To see why this is the case, consider the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
T\binom{x}{y}=\binom{x}{0}, \quad \text { for all }\binom{x}{y} \in \mathbb{R}^{2} .
$$

Observe that the linearly independent set $\left\{e_{1}, e_{2}\right\}$, the standard basis in \mathbb{R}^{2}, gets mapped to the set

$$
\left\{T\left(e_{1}\right), T\left(e_{2}\right)\right\}=\left\{e_{1}, \mathbf{0}\right\}
$$

which is linearly dependent, since the zero vector is in the set.
14. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ denote a linear transformation. Let W denote the null space, \mathcal{N}_{T}, of T. Assume that W has dimension $k<n$. Let $\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ be a basis for W and $\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{1}, v_{2}, \ldots, v_{n-k}\right\}$ be a basis for \mathbb{R}^{n}. Prove that that the set $\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{n-k}\right)\right\}$ is a basis for \mathcal{I}_{T}, the image of T. Deduce that

$$
\operatorname{dim}\left(\mathcal{N}_{T}\right)+\operatorname{dim}\left(\mathcal{I}_{T}\right)=n
$$

Solution: Assume that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation. Let $W=\mathcal{N}_{T}$, null space, and assume that $\operatorname{dim}(W)=k<n$. Let $\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ be a basis for W and $\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{1}, v_{2}, \ldots, v_{n-k}\right\}$ be a basis for \mathbb{R}^{n}. We show that the set

$$
\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{n-k}\right)\right\}
$$

is a basis for the image of T, \mathcal{I}_{T}.
We first show that $\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{n-k}\right)\right\}$ spans \mathcal{I}_{T}. Let $y \in \mathcal{I}_{T}$; then,

$$
\begin{equation*}
y=T(x), \text { for some } x \in \mathbb{R}^{n} . \tag{19}
\end{equation*}
$$

Since $\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{1}, v_{2}, \ldots, v_{n-k}\right\}$ be a basis for \mathbb{R}^{n}, there exists scalars $d_{1}, d_{2}, \ldots, d_{k}, c_{1}, c_{2}, \ldots, c_{n-k}$ such that

$$
\begin{equation*}
x=d_{1} w_{1}+d_{2} w_{2}+\cdots+d_{k} w_{k}+c_{1} v_{1}+\cdots+c_{n-k} v_{n-k} \tag{20}
\end{equation*}
$$

It follows from (19), (20) and the assumption that T is linear that

$$
\begin{equation*}
y=d_{1} T\left(w_{1}\right)+d_{2} T\left(w_{2}\right)+\cdots+d_{k} T\left(w_{k}\right)+c_{1} T\left(v_{1}\right)+\cdots+c_{n-k} T\left(v_{n-k}\right) . \tag{21}
\end{equation*}
$$

Next, use the fact that $w_{1}, w_{2}, \ldots, w_{k}$ are in the null space of T to obtain from (21) that

$$
y=c_{1} T\left(v_{1}\right)+\cdots+c_{n-k} T\left(v_{n-k}\right),
$$

which shows that $y \in \operatorname{span}\left(\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{n-k}\right)\right\}\right)$. We have therefore shown that

$$
\begin{equation*}
\mathcal{I}_{T} \subseteq \operatorname{span}\left(\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{n-k}\right)\right\}\right) \tag{22}
\end{equation*}
$$

In order to show the reverse inclusion to that in (22), let

$$
y \in \operatorname{span}\left(\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{n-k}\right)\right\}\right)
$$

then,

$$
\begin{equation*}
y=c_{1} T\left(v_{1}\right)+c_{2} T\left(v_{2}\right)+\cdots+c_{n-k} T\left(v_{n-k}\right), \tag{23}
\end{equation*}
$$

for some scalars $c_{1}, c_{2}, \ldots, c_{n-k}$. Next, use the assumption that T is linear to get from (23) that

$$
y=T\left(c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n-k} v_{n-k}\right)
$$

which shows that $y \in \mathcal{I}_{T}$. Thus,

$$
\begin{equation*}
\operatorname{span}\left(\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{n-k}\right)\right\}\right) \subseteq \mathcal{I}_{T} \tag{24}
\end{equation*}
$$

Combining (22) and (24) yields

$$
\mathcal{I}_{T}=\operatorname{span}\left(\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{n-k}\right)\right\}\right)
$$

Hence, $\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{n-k}\right)\right\}$ spans \mathcal{I}_{T}.
Next, we shoe that $\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{n-k}\right)\right\}$ is linearly independent. To see why this is so, let $c_{1}, c_{2}, \ldots, c_{n-k}$ be scalars such that

$$
\begin{equation*}
c_{1} T\left(v_{1}\right)+c_{2} T\left(v_{2}\right)+\cdots+c_{n-k} T\left(v_{n-k}\right)=\mathbf{0} \tag{25}
\end{equation*}
$$

Using the assumption that T is linear, we can rewrite (25) as

$$
T\left(c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n-k} v_{n-k}\right)=\mathbf{0}
$$

which shows that $c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n-k} v_{n-k} \in \mathcal{N}_{T}$. Thus, since $\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ is a basis for \mathcal{N}_{T},

$$
\begin{equation*}
c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n-k} v_{n-k}=d_{1} w_{2}+d_{2} w_{k}+\cdots+d_{k} w_{k}, \tag{26}
\end{equation*}
$$

for some scalars $d_{1}, d_{2}, \ldots, d_{k}$. We can rewrite (26) as

$$
\begin{equation*}
\left(-d_{1}\right) w_{2}+\left(-d_{2}\right) w_{k}+\cdots+\left(-d_{k}\right) w_{k}+c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n-k} v_{n-k}=\mathbf{0} \tag{27}
\end{equation*}
$$

so that, since $\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{1}, v_{2}, \ldots, v_{n-k}\right\}$ is a basis for \mathbb{R}^{n}, it follows from (27) that

$$
\begin{equation*}
-d_{1}=-d_{2}=\cdots=-d_{k}=c_{1}=c_{2}=\cdots=c_{n-k}=0 \tag{28}
\end{equation*}
$$

In particular, we get from (28) that

$$
\begin{equation*}
c_{1}=c_{2}=\cdots=c_{n-k}=0 \tag{29}
\end{equation*}
$$

We have shown that (25) implies (29); thus, the set $\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{n-k}\right)\right\}$ is linearly independent.
Hence $\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{n-k}\right)\right\}$ is is a basis for \mathcal{I}_{T}, so that

$$
\operatorname{dim}\left(\mathcal{I}_{T}\right)=n-k=n-\operatorname{dim}\left(\mathcal{N}_{T}\right)
$$

from which we get

$$
\operatorname{dim}\left(\mathcal{N}_{T}\right)+\operatorname{dim}\left(\mathcal{I}_{T}\right)=n
$$

which was to be shown.
15. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ denote a linear transformation. Prove that if λ is an eigenvalue of T, then λ^{k} is an eigenvalue of T^{k} for every positive integer k. If μ is an eigenvalue of T^{k}, is $\mu^{1 / k}$ always and eigenvalue of T ?
Solution: Let λ be an eigenvalue of $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Then, there exists a nonzero vector, v, in \mathbb{R}^{n} such that

$$
T(v)=\lambda v
$$

Applying the transformation, T, on both sides and using the fact that T is linear and that v is an eigenvector corresponding to λ, we obtain that

$$
T^{2}(v)=T(\lambda v)=\lambda T(v)=\lambda \lambda v=\lambda^{2} v
$$

so that, since $v \neq 0, \lambda^{2}$ is an eigenvalue for T^{2}.

We may now proceed by induction on k to show that

$$
\lambda^{k}, \quad \text { for all } k=1,2,3, \ldots,
$$

is an eigenvalue of T^{k}. To do this, assume we have established that λ^{k-1} is an eigenvalue of T^{k-1} and that v is an eigenvector for T corresponding to the eigenvalue λ, so that v is also an eigenvector of T^{k-1} corresponding to λ^{k-1}. We then have that

$$
T^{k-1}(v)=\lambda^{k-1} v
$$

Thus, applying the transformation, T, on both sides and using the fact that T is linear and that v is an eigenvector corresponding to λ, we obtain that

$$
T^{k}(v)=T\left(T^{k-1} v\right)=T\left(\lambda^{k-1} v\right)=\lambda^{k-1} T(v)=\lambda^{k-1} \lambda v=\lambda^{k} v
$$

so that, since $v \neq \mathbf{0}, \lambda^{k}$ is an eigenvalue for T^{k}.
Next, consider the function $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by rotation in the counterclockwise sense by 90° or $\pi / 2$ radians; that is,

$$
T\binom{x}{y}=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\binom{x}{y} \quad \text { for all }\binom{x}{y} \in \mathbb{R}^{2} .
$$

Then, $T^{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is given by

$$
T^{2}\binom{x}{y}=\left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right)\binom{x}{y} \quad \text { for all }\binom{x}{y} \in \mathbb{R}^{2}
$$

which has $\mu=-1$ as the only eigenvalue. Observe that T has no real eigenvalues, so $\mu^{1 / 2}$ cannot be a (real) eigenvalue of T.
16. Let $\mathcal{E}=\left\{e_{1}, e_{2}\right\}$ denote the standard basis in \mathbb{R}^{2}, and let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear function satisfying: $f\left(e_{1}\right)=e_{1}+e_{2}$ and $f\left(e_{2}\right)=2 e_{1}-e_{2}$.
Give the matrix representations for f and $f \circ f$ relative to \mathcal{E}.
Solution: Observe that

$$
f\left(e_{1}\right)=\binom{1}{1} \quad \text { and } \quad f\left(e_{2}\right)=\binom{2}{-1}
$$

It then follows that the matrix representation for f relative to \mathcal{E} is

$$
M_{f}=\left(\begin{array}{rr}
1 & 2 \\
1 & -1
\end{array}\right) .
$$

The matrix representation of $f \circ f$ is the product $M_{f} M_{f}$, or

$$
M_{f \circ f}=\left(\begin{array}{rr}
1 & 2 \\
1 & -1
\end{array}\right)\left(\begin{array}{rr}
1 & 2 \\
1 & -1
\end{array}\right)=\left(\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right)
$$

17. A function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is defined as follows: Each vector $v \in \mathbb{R}^{2}$ is reflected across the y-axis, and then doubled in length to yield $f(v)$.
Verify that f is linear and determine the matrix representation, M_{f}, for f relative to the standard basis in \mathbb{R}^{2}.
Solution: The function f is the composition of the reflection $R: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
R\binom{x}{y}=\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right)\binom{x}{y}, \quad \text { for all }\binom{x}{y} \in \mathbb{R}^{2}
$$

and the function $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $T(w)=2 w$ for all $w \in \mathbb{R}^{2}$ or, in matrix form,

$$
T\binom{x}{y}=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)\binom{x}{y}, \quad \text { for all }\binom{x}{y} \in \mathbb{R}^{2} .
$$

Note that both R and T are linear since they are both defined in terms of multiplication by a matrix. It then follows that $f=T \circ R$ is linear and its matrix representation, M_{f}, relative to the standard basis in \mathbb{R}^{2} is

$$
M_{f}=M_{T} M_{R}=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{rr}
-2 & 0 \\
0 & 2
\end{array}\right)
$$

18. Find a 2×2 matrix A such that the function $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $T(v)=A v$ maps the coordinates of any vector, relative to the standard basis in \mathbb{R}^{2}, to its coordinates relative the basis $\mathcal{B}=\left\{\binom{1}{1},\binom{1}{-1}\right\}$.
Solution: Denote the vectors in \mathcal{B} by v_{1} and v_{2}, respectively, so that

$$
v_{1}=\binom{1}{1} \quad \text { and } \quad v_{2}=\binom{1}{-1}
$$

We want the function T to satisfy

$$
\begin{equation*}
T(v)=[v]_{\mathcal{B}} \tag{30}
\end{equation*}
$$

for every $v \in \mathbb{R}^{2}$ given in terms of the standard basis in \mathbb{R}^{2}.
We can attain (30) by means of the change of basis matrix $[i d]_{\mathcal{E}}^{\mathcal{E}}$, where

$$
\mathcal{E}=\left\{e_{1}, e_{2}\right\}
$$

is the standard basis in \mathbb{R}^{2}. Indeed, using the expression

$$
[i d(v)]_{\mathcal{B}}=[i d]_{\mathcal{E}}^{\mathcal{B}}[v]_{\mathcal{E}},
$$

we obtain

$$
\begin{equation*}
[v]_{\mathcal{B}}=[i d]_{\mathcal{E}}^{\mathcal{B}} v . \tag{31}
\end{equation*}
$$

The matrix $[i d]_{\mathcal{E}}^{\mathcal{B}}$ in (31) is the inverse of the matrix $[i d]_{\mathcal{B}}^{\mathcal{E}}$ given by

$$
[i d]_{\mathcal{B}}^{\mathcal{E}}=\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]=\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right) .
$$

We therefore have that

$$
[i d]_{\mathcal{E}}^{\mathcal{B}}=\frac{1}{-2}\left(\begin{array}{rr}
-1 & -1 \tag{32}\\
-1 & 1
\end{array}\right)=\left(\begin{array}{rr}
1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2
\end{array}\right) .
$$

Combining (30), (31) and (32) we get

$$
T(v)=A v
$$

where A is the matrix

$$
A=\left(\begin{array}{rr}
1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2
\end{array}\right)
$$

19. Let u_{1} and u_{2} denote a unit vector in \mathbb{R}^{3} that are orthogonal to each other; i.e., $\left\langle u_{1}, u_{2}\right\rangle=0$, where $\langle\cdot, \cdot\rangle$ denotes the Euclidean inner product in \mathbb{R}^{3}.
Define $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by $f(v)=\left\langle v, u_{1}\right\rangle u_{1}+\left\langle v, u_{2}\right\rangle u_{2}$ for all $v \in \mathbb{R}^{3}$.
(a) Use the Dimension Theorem to compute $\operatorname{dim}\left(\mathcal{N}_{f}\right)$.

Solution: We first note that

$$
\begin{equation*}
\mathcal{I}_{f}=\operatorname{span}\left(\left\{u_{1}, u_{2}\right\}\right) \tag{33}
\end{equation*}
$$

To see why the assertion in (33) is true, let $w \in \mathcal{I}_{f}$; so that,

$$
w=f(v)=\left\langle v, u_{1}\right\rangle u_{1}+\left\langle v, u_{2}\right\rangle u_{2}
$$

for some $v \in \mathbb{R}^{3}$; thus, w is a linear combination of u_{1} and u_{2}. We have therefore shown that

$$
\begin{equation*}
\mathcal{I}_{f} \subseteq \operatorname{span}\left(\left\{u_{1}, u_{2}\right\}\right) \tag{34}
\end{equation*}
$$

In order to show the other inclusion, note that

$$
f\left(u_{1}\right)=\left\langle u_{1}, u_{1}\right\rangle u_{1}+\left\langle u_{1}, u_{2}\right\rangle u_{2}=u_{1},
$$

since $\left\langle u_{1}, u_{2}\right\rangle=0$ and u_{1} is a unit vector. Thus, $u_{1}=f\left(u_{1}\right)$; so that $u_{1} \in \mathcal{I}_{f}$. Similarly, $u_{2} \in \mathcal{I}_{f}$. We then have that

$$
\left\{u_{1}, u_{2}\right\} \subseteq \mathcal{I}_{f}
$$

from which we get that

$$
\begin{equation*}
\operatorname{span}\left(\left\{u_{1}, u_{2}\right\}\right) \subseteq \mathcal{I}_{f} \tag{35}
\end{equation*}
$$

since \mathcal{I}_{f} is a subspace of \mathbb{R}^{3} and $\operatorname{span}\left(\left\{u_{1}, u_{2}\right\}\right)$ is the smallest subspace of \mathbb{R}^{3} that contains $\left\{u_{1}, u_{2}\right\}$. Combining (34) and (35) yields (33).
Next, we show that $\left\{u_{1}, u_{2}\right\}$ is linearly independent. Consider the equation

$$
\begin{equation*}
c_{1} u_{1}+c_{2} u_{2}=\mathbf{0} \tag{36}
\end{equation*}
$$

Take the inner product with u_{1} on both sides of (36) to get

$$
\left\langle c_{1} u_{1}+c_{2} u_{2}, u_{1}\right\rangle=\left\langle\mathbf{0}, u_{1}\right\rangle
$$

or, using the bi-linearity of the inner product,

$$
\begin{equation*}
c_{1}\left\langle u_{1}, u_{1}\right\rangle+c_{2}\left\langle u_{2}, u_{1}\right\rangle=0 \tag{37}
\end{equation*}
$$

thus, since $\left\langle u_{1}, u_{2}\right\rangle=0$ and u_{1} is a unit vector, it follows from (37) that $c_{1}=0$. Similarly, $c_{2}=0$. We therefore get that the equation in (36) has only the trivial solution. Therefore, the set $\left\{u_{1}, u_{2}\right\}$ is linearly independent. Hence, in view of (33), $\left\{u_{1}, u_{2}\right\}$ is a basis for \mathcal{I}_{f}.
It then follows that $\operatorname{dim}\left(\mathcal{I}_{f}\right)=2$. Hence, by the Dimension Theorem for Linear Transformations,

$$
\operatorname{dim}\left(\mathcal{N}_{f}\right)+\operatorname{dim}\left(\mathcal{I}_{f}\right)=3
$$

we obtain that

$$
\operatorname{dim}\left(\mathcal{N}_{f}\right)=1
$$

(b) Show that $v-f(v)$ is orthogonal to every vector w in the image of f.

Solution: In view of (33) in part (a) of this problem, it suffices to show that

$$
\begin{equation*}
\left\langle v-f(v), u_{1}\right\rangle=0 \quad \text { and } \quad\left\langle v-f(v), u_{2}\right\rangle=0 \tag{38}
\end{equation*}
$$

Indeed, assume that (38) has been established. Take $w \in \mathcal{I}_{f}$; then,

$$
w=c_{1} u_{1}+c_{2} u_{2},
$$

for some scalars c_{1} and c_{2}, by virtue of (33). Then,

$$
\begin{aligned}
\langle v-f(v), w\rangle & =\left\langle v-f(v), c_{1} u_{1}+c_{2} u_{2}\right\rangle \\
& =c_{1}\left\langle v-f(v), u_{1}\right\rangle+c_{2}\left\langle v-f(v), u_{2}\right\rangle
\end{aligned}
$$

by the bi-linearity of the Euclidean inner product; so that, using (38),

$$
\langle v-f(v), w\rangle=0, \quad \text { for all } w \in \mathcal{I}_{f} .
$$

In order to prove the claims in (38), compute

$$
\begin{aligned}
\left\langle v-f(v), u_{1}\right\rangle & =\left\langle v, u_{1}\right\rangle-\left\langle f(v), u_{1}\right\rangle \\
& =\left\langle v, u_{1}\right\rangle-\left\langle\left\langle v, u_{1}\right\rangle u_{1}+\left\langle v, u_{2}\right\rangle u_{2}, u_{1}\right\rangle \\
& =\left\langle v, u_{1}\right\rangle-\left\langle v, u_{1}\right\rangle\left\langle u_{1}, u_{1}\right\rangle+\left\langle v, u_{2}\right\rangle\left\langle u_{2}, u_{1}\right\rangle
\end{aligned}
$$

where we have used the bi-linearity of the Euclidean inner product. Thus, since $\left\langle u_{1}, u_{2}\right\rangle=0$ and u_{1} is a unit vector,

$$
\left\langle v-f(v), u_{1}\right\rangle=\left\langle v, u_{1}\right\rangle-\left\langle v, u_{1}\right\rangle=0
$$

Similarly,

$$
\left\langle v-f(v), u_{2}\right\rangle=\left\langle v, u_{2}\right\rangle-\left\langle v, u_{2}\right\rangle=0 .
$$

(c) Show that $f(v)$ gives the point in the plane spanned by u_{1} and u_{2} that is the closest to v in \mathbb{R}^{3}.
Solution: Let $v \in \mathbb{R}^{3}$ be given. Any point in $\operatorname{span}\left(\left\{u_{1}, u_{2}\right\}\right)$ is of the form $x u_{1}+y u_{2}$, where x and y are scalars. Define a function of two variables

$$
\begin{equation*}
g(x, y)=\left\|v-x u_{1}-y u_{2}\right\|^{2}, \quad \text { for } x \in \mathbb{R} \text { and } y \in \mathbb{R} \tag{39}
\end{equation*}
$$

Thus, $g(x, y)$ in (39) gives the square of the distance from v to a point in the plane $\operatorname{span}\left(\left\{u_{1}, u_{2}\right\}\right)$ with coordinates x and y relative to the basis $\mathcal{B}=\operatorname{span}\left(\left\{u_{1}, u_{2}\right\}\right)$ for the plane. We would like to find the coordinates of the point in the plane spanned by u_{1} and u_{2} for which $g(x, y)$ is the smallest possible.
Use the definition of the Euclidean norm and the properties of the Euclidean inner product to rewrite (39) as follows:

$$
\begin{aligned}
g(x, y)= & \left\langle v-x u_{1}-y u_{2}, v-x u_{1}-y u_{2}\right\rangle \\
= & \langle v, v\rangle-x\left\langle v, u_{1}\right\rangle-y\left\langle v, u_{2}\right\rangle \\
& -x\left\langle u_{1}, v\right\rangle+x^{2}\left\langle u_{1}, u_{1}\right\rangle+x y\left\langle u_{1}, u_{2}\right\rangle \\
& -y\left\langle u_{2}, v\right\rangle+x y\left\langle u_{2}, u_{1}\right\rangle y^{2}\left\langle u_{2}, u_{2}\right\rangle ;
\end{aligned}
$$

so that, using the assumptions that u_{1} and u_{2} are unit vectors, and $\left\langle u_{1}, u_{2}\right\rangle=$ 0 ,

$$
\begin{equation*}
g(x, y)=x^{2}+y^{2}-2 x\left\langle v, u_{1}\right\rangle-2 y\left\langle v, u_{2}\right\rangle+\|v\|^{2} \tag{40}
\end{equation*}
$$

for $x \in \mathbb{R}$ and $y \in \mathbb{R}$.
Completing the squares in x and in y for the expression for $g(x, y)$ in (40) yields

$$
\begin{equation*}
g(x, y)=\left(x-\left\langle v, u_{1}\right\rangle\right)^{2}+\left(y-\left\langle v, u_{2}\right\rangle\right)^{2}+\|v\|^{2}-\left(\left\langle v, u_{1}\right\rangle\right)^{2}-\left(\left\langle v, u_{2}\right\rangle\right)^{2} \tag{41}
\end{equation*}
$$

for $x \in \mathbb{R}$ and $y \in \mathbb{R}$.
Observe that $g(x, y)$ in (41) is the smallest possible when

$$
x=\left\langle v, u_{1}\right\rangle \quad \text { and } \quad y=\left\langle v, u_{2}\right\rangle .
$$

We therefore get that the point in $\operatorname{span}\left(\left\{u_{1}, u_{2}\right\}\right)$ that is the closest to v is

$$
\left\langle v, u_{1}\right\rangle u_{1}+\left\langle v, u_{2}\right\rangle u_{2},
$$

which is the definition of $f(v)$.

