Definition of Real Vector Spaces or Linear Spaces

A vector space, or linear space, V, over the real numbers is a set of objects, called vectors, in which two algebraic operations, vector addition and scalar multiplication, have been defined. The first operation takes two members of V, call them u and v, and yields the vector sum of u and v, denoted $u+v$. The second operation combines a real number a, also known as a scalar, and a vector v in V to yield an object $a v$ called the product of a and v. The two operations must satisfy the following properties:

I. Closure properties

0 . If u and v are vectors in V, then $u+v$ is also a vector in V. If v is in V and a is a real number, then the product $a v$ is also in V.

II. Properties of vector addition

1. For any u and v in $V, u+v=v+u$ (commutativity of vector addition).
2. For any three elements u, v, and w in $V,(u+v)+w=u+(v+w)$ (associativity of vector addition).
3. There exists an element $\mathbf{0}$ in V, called the zero vector, with the property: $v+0=v$ for all v in V (existence of an identity for vector addition).
4. For every v in V, there exists a u, also in V, with the property: $u+v=0$ (existence of additive inverses).

III. Properties of scalar multiplication

5. For any pair of real numbers a and b, and any vector v in $V,(a b) v=a(b v)$.
6. For any v in $V, 1 v=v$.

IV. Distributive properties

7. For any scalar a and any pair of vectors u and $v, a(u+v)=a u+a v$.
8. For any scalars a and b, and any vector $v,(a+b) v=a v+b v$.
