Assignment \#1

Due on Thursday, September 8, 2016
Read Chapter 2, An Example from Statistical Inference, in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 3.1, Sample Spaces and σ-fields, in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 3.2, Some Set Algebra, in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 3.3, More on σ-fields, in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 1.4 on Set Theory in DeGroot and Schervish.

Background and Definitions

- A σ-field, \mathcal{B}, is a collection of subsets of a sample space \mathcal{C}, referred to as events, which satisfy:
(1) $\emptyset \in \mathcal{B}$ (\emptyset denotes the empty set)
(2) If $E \in \mathcal{B}$, then its complement, E^{c}, is also an element of \mathcal{B}.
(3) If $\left(E_{1}, E_{2}, E_{3} \ldots\right)$ is a sequence of events, then

$$
E_{1} \cup E_{2} \cup E_{3} \cup \ldots=\bigcup_{k=1}^{\infty} E_{k} \in \mathcal{B}
$$

- Let \mathcal{S} denote a collection of subsets of a sample space \mathcal{C}. The σ-field generated by \mathcal{S}, denoted by $\mathcal{B}(\mathcal{S})$, is the smallest σ-field in \mathcal{C} which contains \mathcal{S}.
- \mathcal{B}_{o} denotes the Borel σ-field of the real line, \mathbb{R}. This is the σ-field generated by the semi-infinite intervals

$$
(-\infty, b], \quad \text { for } b \in \mathbb{R}
$$

Do the following problems

1. Let \mathcal{C} denote a sample space and A be a subset of \mathcal{C}. Establish the following set theoretic identities, where \emptyset denotes the empty set. Justify your steps.
(a) $A \cap \emptyset=\emptyset$
(b) $A \cup \emptyset=A$
2. Let \mathcal{C} denote a sample space and A and B denote subsets of \mathcal{C}. Establish the following set theoretic identities:
(a) $\left(A^{c}\right)^{c}=A$,
(b) $(A \cup B)^{c}=A^{c} \cap B^{c}$;
where A^{c} denote the complement of A.
3. Let \mathcal{C} denote a sample space and A, B and C denote subsets of \mathcal{C}. Prove the following distributive properties:
(a) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
(b) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
4. Let A and B be subsets of the sample space \mathcal{C}. The set difference $A \backslash B$ is defined to be

$$
A \backslash B=\{x \in A \mid x \notin B\} ;
$$

thus, $A \backslash B$ is a subset of A that contains those elements in A which are not in B.
Prove that
(a) $A \backslash B=A \cap B^{c}$,
(b) $B \backslash(A \cap B)=A^{c} \cap B$
5. Suppose that $A \subseteq B$. Prove that $B^{c} \subseteq A^{c}$.
6. Let A, B and C be subsets of a sample space \mathcal{C}. Prove the following
(a) If $A \subseteq C$ and $B \subseteq C$, then $A \cup B \subseteq C$.
(b) If $C \subseteq A$ and $C \subseteq B$, then $C \subseteq A \cap B$.
7. Let \mathcal{C} be a sample space and \mathcal{B} be a σ-field of subsets of \mathcal{C}. Prove that if $\left\{E_{1}, E_{2}, E_{3} \ldots\right\}$ is a sequence of events in \mathcal{B}, then

$$
\bigcap_{k=1}^{\infty} E_{k} \in \mathcal{B} .
$$

Hint: Use De Morgan's Laws.
8. Let \mathcal{C} be a sample space and \mathcal{B} be a σ-field of subsets of \mathcal{C}. For fixed $B \in \mathcal{B}$ define the collection of subsets

$$
\mathcal{B}_{B}=\{D \subseteq \mathcal{C} \mid D=E \cap B \text { for some } E \in \mathcal{B}\}
$$

Show that \mathcal{B}_{B} is a σ-field.
Note: In this case, the complement of $D \in \mathcal{B}_{B}$ has to be understood as $B \backslash D$; that is, the complement relative to B. The σ-field \mathcal{B}_{B} is the σ-field \mathcal{B} restricted to B, or conditioned on B.
9. Let \mathcal{S} denote the collection of all bounded, open intervals (a, b), where a and b are real numbers with $a<b$. Show that

$$
\mathcal{B}(\mathcal{S})=\mathcal{B}_{o}
$$

that is, the σ-field generated by bounded open intervals is the Borel σ-field. Hints:

- We have already seen in the lecture that \mathcal{B}_{o} contains all bounded open intervals.
- Observe also that the semi-infinite open interval (b, ∞) can be expressed as the union of the sequence of bounded intervals (b, k), for $k=1,2,3, \ldots$

10. Show that for every real number a, the singleton $\{a\}$ is in the Borel σ-field \mathcal{B}_{o}. Hint: Express $\{a\}$ as an intersection of a sequence of open intervals.
