Assignment #1

Due on Thursday, September 8, 2016

Read Chapter 2, An Example from Statistical Inference, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 3.1, Sample Spaces and σ -fields, in the class lecture notes at

http://pages.pomona.edu/~ajr04747/

Read Section 3.2, Some Set Algebra, in the class lecture notes at

http://pages.pomona.edu/~ajr04747/

Read Section 3.3, More on σ -fields, in the class lecture notes at

http://pages.pomona.edu/~ajr04747/

Read Section 1.4 on *Set Theory* in DeGroot and Schervish.

Background and Definitions

- A σ -field, \mathcal{B} , is a collection of subsets of a sample space \mathcal{C} , referred to as **events**, which satisfy:
 - (1) $\emptyset \in \mathcal{B}$ (\emptyset denotes the empty set)
 - (2) If $E \in \mathcal{B}$, then its complement, E^c , is also an element of \mathcal{B} .
 - (3) If $(E_1, E_2, E_3...)$ is a sequence of events, then

$$E_1 \cup E_2 \cup E_3 \cup \ldots = \bigcup_{k=1}^{\infty} E_k \in \mathcal{B}.$$

- Let S denote a collection of subsets of a sample space C. The σ -field generated by S, denoted by B(S), is the smallest σ -field in C which contains S.
- \mathcal{B}_o denotes the Borel σ -field of the real line, \mathbb{R} . This is the σ -field generated by the semi-infinite intervals

$$(-\infty, b], \quad \text{for } b \in \mathbb{R}.$$

Do the following problems

1. Let \mathcal{C} denote a sample space and A be a subset of \mathcal{C} . Establish the following set theoretic identities, where \emptyset denotes the empty set. Justify your steps.

(a)
$$A \cap \emptyset = \emptyset$$

(b)
$$A \cup \emptyset = A$$

- 2. Let \mathcal{C} denote a sample space and A and B denote subsets of \mathcal{C} . Establish the following set theoretic identities:
 - (a) $(A^c)^c = A$,
 - (b) $(A \cup B)^c = A^c \cap B^c$;

where A^c denote the complement of A.

- 3. Let \mathcal{C} denote a sample space and A, B and C denote subsets of \mathcal{C} . Prove the following distributive properties:
 - (a) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 - (b) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- 4. Let A and B be subsets of the sample space C. The set difference $A \setminus B$ is defined to be

$$A \backslash B = \{ x \in A \mid x \notin B \};$$

thus, $A \backslash B$ is a subset of A that contains those elements in A which are not in B.

Prove that

- (a) $A \backslash B = A \cap B^c$,
- (b) $B \setminus (A \cap B) = A^c \cap B$
- 5. Suppose that $A \subseteq B$. Prove that $B^c \subseteq A^c$.
- 6. Let A, B and C be subsets of a sample space C. Prove the following
 - (a) If $A \subseteq C$ and $B \subseteq C$, then $A \cup B \subseteq C$.
 - (b) If $C \subseteq A$ and $C \subseteq B$, then $C \subseteq A \cap B$.
- 7. Let \mathcal{C} be a sample space and \mathcal{B} be a σ -field of subsets of \mathcal{C} . Prove that if $\{E_1, E_2, E_3...\}$ is a sequence of events in \mathcal{B} , then

$$\bigcap_{k=1}^{\infty} E_k \in \mathcal{B}.$$

Hint: Use De Morgan's Laws.

8. Let \mathcal{C} be a sample space and \mathcal{B} be a σ -field of subsets of \mathcal{C} . For fixed $B \in \mathcal{B}$ define the collection of subsets

$$\mathcal{B}_B = \{ D \subseteq \mathcal{C} \mid D = E \cap B \text{ for some } E \in \mathcal{B} \}.$$

Show that \mathcal{B}_B is a σ -field.

Note: In this case, the complement of $D \in \mathcal{B}_B$ has to be understood as $B \setminus D$; that is, the complement relative to B. The σ -field \mathcal{B}_B is the σ -field \mathcal{B} restricted to B, or conditioned on B.

9. Let S denote the collection of all bounded, open intervals (a, b), where a and b are real numbers with a < b. Show that

$$\mathcal{B}(\mathcal{S}) = \mathcal{B}_o;$$

that is, the σ -field generated by bounded open intervals is the Borel σ -field.

Hints:

- We have already seen in the lecture that \mathcal{B}_o contains all bounded open intervals.
- Observe also that the semi-infinite open interval (b, ∞) can be expressed as the union of the sequence of bounded intervals (b, k), for $k = 1, 2, 3, \ldots$
- 10. Show that for every real number a, the singleton $\{a\}$ is in the Borel σ -field \mathcal{B}_o .

 Hint: Express $\{a\}$ as an intersection of a sequence of open intervals.