Assignment #2

Due on Thursday, September 15, 2016

Read Section 3.4 on *Defining a Probability Function* in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 1.5 on *The Definition of Probability* in DeGroot and Schervish.

Read Section 1.6 on Finite Sample Spaces in DeGroot and Schervish.

Do the following problems.

- 1. Consider two events A and B such that $\Pr(A) = 1/3$ and $\Pr(B) = 1/2$. Determine the value of $\Pr(B \cap A^c)$ for each of the following conditions:
 - (a) A and B are disjoint;
 - (b) $A \subseteq B$;
 - (c) $Pr(A \cap B) = 1/8$.
- 2. Consider two events A and B with Pr(A) = 0.4 and Pr(B) = 0.7. Determine the maximum and minimum possible values for $Pr(A \cap B)$ and the conditions under which each of these values is attained.
- 3. Prove that for every two events A and B, the probability that exactly one of the two events will occur is given by the expression

$$Pr(A) + Pr(B) - 2Pr(A \cap B)$$
.

4. Let A and B be elements in a σ -field \mathcal{B} on a sample space \mathcal{C} , and let Pr denote a probability function defined on \mathcal{B} . Recall that $A \setminus B = \{x \in A \mid x \notin B\}$. Prove that if $B \subseteq A$, then

$$Pr(A \setminus B) = Pr(A) - Pr(B).$$

2

5. Let (C, \mathcal{B}, \Pr) denote a probability space, and B an event in \mathcal{B} with $\Pr(B) > 0$. Let

$$\mathcal{B}_B = \{ D \subset \mathcal{C} \mid D = E \cap B \text{ for some } E \in \mathcal{B} \}.$$

We have already seen that \mathcal{B}_B is a σ -field.

Let $P_B \colon \mathcal{B}_B \to \mathbb{R}$ be defined by $P_B(A) = \frac{\Pr(A)}{\Pr(B)}$ for all $A \in \mathcal{B}_B$. Verify that (B, \mathcal{B}_B, P_B) is a probability space; that is, show that $P_B \colon \mathcal{B}_B \to \mathbb{R}$ is a probability function.

6. Let (C, B, Pr) be a sample space. Suppose that E_1, E_2, E_3, \ldots is a sequence of events in B satisfying

$$E_1 \supseteq E_2 \supseteq E_3 \supseteq \cdots$$
.

Prove that
$$\lim_{n\to\infty} \Pr(E_n) = \Pr\left(\bigcap_{k=1}^{\infty} E_k\right)$$
.

Hint: Use the analogous result for an increasing nested sequence of events presented in class and De Morgan's laws.

7. A point (x, y) is to be selected at random from a square S containing all the points (x, y) such that $0 \le x \le 1$ and $0 \le y \le 1$. Suppose that the probability that the selected point will belong to each specified subset of S is equal to the area of that subset. Find the probability of each of the following subsets:

(a) the subset of points such that
$$\left(x - \frac{1}{2}\right)^2 + \left(y - \frac{1}{2}\right)^2 \geqslant \frac{1}{4}$$
;

(b) the subset of points such that
$$\frac{1}{2} < x + y < \frac{3}{2}$$
;

- (c) the subset of points such that $y < 1 x^2$;
- (d) the subset of points such that x = y.
- 8. In a random experiment, two balanced dice are rolled.
 - (a) What is the probability that the sum of the two numbers that appear will be even?
 - (b) What is the probability that the difference of the two numbers that appear will be less than 3?

9. A coin is tossed as many times as necessary to turn up one head. Thus, the elements of the sample space C corresponding to this experiment are

$$H, TH, TTH, TTTH, \dots$$

Let Pr be a functions that assigns to these elements the values $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots$ respectively.

- (a) Show that $Pr(\mathcal{C}) = 1$.
- (b) Let E_1 denote the event $E_1 = \{H, TH, TTH, TTTH \text{ or } TTTTH\}$, and compute $Pr(E_1)$.
- (c) Let $E_2 = \{TTTTH, TTTTTH\}$, and compute $\Pr(E_2)$, $\Pr(E_1 \cap E_2)$ and $\Pr(E_2 \setminus E_1)$
- 10. Let $\mathcal{C} = \{x \in \mathbb{R} \mid x > 0\}$ and define Pr on open intervals (a,b) with 0 < a < b by

$$\Pr((a,b)) = \int_a^b e^{-x} \, \mathrm{d}x.$$

- (a) Show that $Pr(\mathcal{C}) = 1$.
- (b) Let $E = \{x \in \mathcal{C} \mid 4 < x < \infty\}$, and compute $\Pr(E)$, $\Pr(E^c)$ and $\Pr(E \cup E^c)$.