Assignment \#6

Due on Thursday, October 20, 2016
Read Section 5.1 on Expected Value of a Random Variable in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 5.2 on Properties of Expectation in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 5.3 on Moments in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 5.4 on Variance in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 4.1 on The Expectation of a Random Variable in DeGroot and Schervish.
Read Section 4.2 on Properties of Expectations in DeGroot and Schervish.
Read Section 4.3 on Variance in DeGroot and Schervish.
Read Section 5.2 on The Bernoulli and Binomial Distributions in DeGroot and Schervish.

Do the following problems.

1. A balanced die is tossed n times. Let X denote the number of 1's that come up. Give the pmf for X and compute its expectation.
2. Let X and Y denote independent $\operatorname{Binomial}(n, p)$ random variables and put $Z=X+Y$. Determine the pmf of Z and compute its expectation.
Hint: Suppose there are n red balls and n blue balls in a box. Compute the number of ways of picking k balls out of the box, l of which are red and $k-l$ of which are blue.
3. (Random Walk on the Integers). A particle starts at $x=0$ and, after one unit of time, it moves one unit to the right with probability p, for $0<p<1$, or to the left with probability $1-p$. Let X_{1} denote the position of the particle after one unit of time and X_{2} denote that after 2 units of time. Give the probability mass functions for X_{1} and X_{2} and compute their expectations. Assume that at each time step, whether a particle will move to the right or to the left is independent of where it has been.
4. (Random Walk on the Integers, Continued). Let X_{3} denote the position of the particle in the previous problem after 3 units of time. Give its pmf and expectation. Generalize this result to X_{n}, the position of the particle after n units of time.
5. Toss a coin 100 times, and let X denote the number of heads that come up. Given that the probability of a head is p, where $0<p<1$, give the distribution function of X and compute $\operatorname{Pr}(35 \leqslant X \leqslant 45)$ for the cases $p=0.5$ and $p=0.4$.
6. Let $X \sim \operatorname{Uniform}(1,2)$. Compute the variance of X.
7. Let $a \in \mathbb{R}$ and X be a discrete random variable with pmf

$$
p_{X}(x)= \begin{cases}1, & \text { if } x=a \\ 0, & \text { elswhere }\end{cases}
$$

Compute the variance of X.
8. Let X be a continuous random variable with variance σ^{2}. Define $Y=c X$, for some constant c. Compute the variance of Y in terms of σ^{2}.
9. Suppose that one word is selected at random from the sentence

THE GIRL PUT ON HER BEAUTIFUL HAT.
If X denotes the number of letters in the word that is selected, what is the value of $\operatorname{var}(X)$?
10. Suppose that X is a random variable for which $E(X)=\mu$ and $\operatorname{var}(X)=\sigma^{2}$. Show that

$$
E[X(X-1)]=\mu(\mu-1)+\sigma^{2} .
$$

