Assignment \#9

Due on Thursday, November 17, 2016
Read Section 6.3 on the Independent Random Variables in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 7.1 on The Normal Distribution in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 5.6 on The Normal Distributions in DeGroot and Schervish.
Do the following problems.

1. Suppose that $X \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$ and define $Z=\frac{X-\mu}{\sigma}$.

Prove that $Z \sim \operatorname{Normal}(0,1)$
2. (The Chi-Square Distribution) Let $X \sim \operatorname{Normal}(0,1)$ and define $Y=X^{2}$. Compute the pdf, f_{Y}, of Y.
The distribution of Y is called the Chi-Square distribution with one degree of freedom; we write $Y \sim \chi^{2}(1)$.
3. (Moment Generating Function of the Chi-Square Distribution) Assume that $Y \sim \chi^{2}(1)$. Compute the mgf, ψ_{Y}, of Y by computing $E\left(e^{t Y}\right)=E\left(e^{t X^{2}}\right)$, where $X \sim \operatorname{Normal}(0,1)$.
Use the mgf of Y to compute $E(Y)$ and $\operatorname{var}(Y)$.
4. Let Y_{1} and Y_{2} denote two independent random variables such that $Y_{1} \sim \chi^{2}(1)$ and $Y_{2} \sim \chi^{2}(1)$. Define $X=Y_{1}+Y_{2}$. Use the mgf of the $\chi^{2}(1)$ distribution found in Problem 3 to compute the mgf of X. Give the distribution of X.
5. Let X_{1} and X_{2} denote independent, $\operatorname{Normal}\left(0, \sigma^{2}\right)$ random variables, where $\sigma>0$. Define the random variables

$$
\bar{X}=\frac{X_{1}+X_{2}}{2} \quad \text { and } \quad Y=\frac{\left(X_{1}-X_{2}\right)^{2}}{2 \sigma^{2}}
$$

Determine the distributions of \bar{X} and Y.
Suggestion: To obtain the distribution for Y, first show that

$$
\frac{X_{1}-X_{2}}{\sqrt{2} \sigma} \sim \operatorname{Normal}(0,1)
$$

6. Let X and Y be independent $\operatorname{Normal}(0,1)$ random variables.

Compute $\operatorname{Pr}\left(X^{2}+Y^{2}<1\right)$.
7. Let $X_{1}, X_{2}, X_{3}, \ldots, X_{n}$ be independent identically distributed $\operatorname{Normal}(0,1)$ random. Define

$$
Y=X_{1}+X_{2}+\cdots+X_{n} .
$$

Use moment generating functions to determine the distribution of Y. Compute $E(Y)$ and $\operatorname{var}(Y)$.
8. Let $X_{1}, X_{2}, X_{3}, \ldots, X_{n}$ be independent identically distributed $\operatorname{Normal}(0,1)$ random. Define

$$
\bar{X}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n} .
$$

Use moment generating functions to determine the distribution of \bar{X}.
Compute $E(\bar{X})$ and $\operatorname{var}(\bar{X})$.
9. Let X denote a nonnegative random variable. Assume that $\ln (X)$ has a standard normal distribution. Compute the pdf of X.
10. Two instruments are used to measure the height, h, of a tower. The error made by the less accurate instrument is normally distributed with mean 0 and standard deviation 0.0056 h . The error made by the more accurate instrument is normally distributed with mean 0 and standard deviation $0.0044 h$.
Let X_{1} denote the measurement made by the first instrument and X_{2} the measurement made by the second instrument. Assume that X_{1} and X_{2} are independent random variables, and let $X=\frac{X_{1}+X_{2}}{2}$, the average of the two instruments.
(a) Determine the distribution of X.
(b) Compute the probability that their average of the two measurements is within 0.005 h of the height of the tower?

