Assignment #9

Due on Thursday, November 17, 2016

Read Section 6.3 on the *Independent Random Variables* in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 7.1 on *The Normal Distribution* in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 5.6 on *The Normal Distributions* in DeGroot and Schervish.

Do the following problems.

- 1. Suppose that $X \sim \text{Normal}(\mu, \sigma^2)$ and define $Z = \frac{X \mu}{\sigma}$. Prove that $Z \sim \text{Normal}(0, 1)$
- 2. (The Chi–Square Distribution) Let $X \sim \text{Normal}(0,1)$ and define $Y = X^2$. Compute the pdf, f_Y , of Y.

The distribution of Y is called the Chi-Square distribution with one degree of freedom; we write $Y \sim \chi^2(1)$.

3. (Moment Generating Function of the Chi–Square Distribution) Assume that $Y \sim \chi^2(1)$. Compute the mgf, ψ_Y , of Y by computing $E(e^{tY}) = E(e^{tX^2})$, where $X \sim \text{Normal}(0, 1)$.

Use the mgf of Y to compute E(Y) and var(Y).

- 4. Let Y_1 and Y_2 denote two independent random variables such that $Y_1 \sim \chi^2(1)$ and $Y_2 \sim \chi^2(1)$. Define $X = Y_1 + Y_2$. Use the mgf of the $\chi^2(1)$ distribution found in Problem 3 to compute the mgf of X. Give the distribution of X.
- 5. Let X_1 and X_2 denote independent, Normal $(0, \sigma^2)$ random variables, where $\sigma > 0$. Define the random variables

$$\overline{X} = \frac{X_1 + X_2}{2}$$
 and $Y = \frac{(X_1 - X_2)^2}{2\sigma^2}$.

Determine the distributions of \overline{X} and Y.

Suggestion: To obtain the distribution for Y, first show that

$$\frac{X_1 - X_2}{\sqrt{2} \sigma} \sim \text{Normal}(0, 1).$$

- 6. Let X and Y be independent Normal(0, 1) random variables. Compute $Pr(X^2 + Y^2 < 1)$.
- 7. Let $X_1, X_2, X_3, \ldots, X_n$ be independent identically distributed Normal(0, 1) random. Define

$$Y = X_1 + X_2 + \dots + X_n.$$

Use moment generating functions to determine the distribution of Y. Compute E(Y) and var(Y).

8. Let $X_1, X_2, X_3, \ldots, X_n$ be independent identically distributed Normal(0, 1) random. Define

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

Use moment generating functions to determine the distribution of \overline{X} . Compute $E(\overline{X})$ and $\text{var}(\overline{X})$.

- 9. Let X denote a nonnegative random variable. Assume that ln(X) has a standard normal distribution. Compute the pdf of X.
- 10. Two instruments are used to measure the height, h, of a tower. The error made by the less accurate instrument is normally distributed with mean 0 and standard deviation 0.0056h. The error made by the more accurate instrument is normally distributed with mean 0 and standard deviation 0.0044h.

Let X_1 denote the measurement made by the first instrument and X_2 the measurement made by the second instrument. Assume that X_1 and X_2 are independent random variables, and let $X = \frac{X_1 + X_2}{2}$, the average of the two instruments.

- (a) Determine the distribution of X.
- (b) Compute the probability that their average of the two measurements is within 0.005h of the height of the tower?