Exam 1

Thursday, September 29, 2016
Name:
This is a closed-book and closed-notes exam. Show all significant work and give reasons for all your answers. Use your own paper and/or the paper provided by the instructor. You have up to 75 minutes to work on the following 5 problems. Relax.

1. Let $(\mathcal{C}, \mathcal{B}, \operatorname{Pr})$ denote a probability space.
(a) State precisely what it means for $E_{1}, E_{2}, E_{3} \in \mathcal{B}$ to be mutually exclusive.
(b) State precisely what it means for $E_{1}, E_{2}, E_{3} \in \mathcal{B}$ to be mutually independent.
2. Let $(\mathcal{C}, \mathcal{B}, \operatorname{Pr})$ denote a probability space, and let A and B be elements in the $\sigma-$ Field \mathcal{B}. Recall that $A \backslash B=\{x \in A \mid x \notin B\}$. Use the additivity property of probability to derive the fact: $\operatorname{Pr}(A \backslash B)=\operatorname{Pr}(A)-\operatorname{Pr}(A \cap B)$.
Provide reasons for the steps in your derivation.
3. Consider a fair six-sided die where one side is labeled 1 , and the others are all labeled 0 . The die is rolled twice in a row. Let A denote the event that the first die is a $1, B$ the event that the second die is a 0 .
(a) Give the elements in the sample space for this experiment.
(b) Give the probability, Pr, associated with each of the sample points.
(c) Compute $\operatorname{Pr}(A)$ and $\operatorname{Pr}(B)$.
4. For the probability space $(\mathcal{C}, \mathcal{B}, \operatorname{Pr})$ and events A and B defined in Problem 3,
(a) compute $\operatorname{Pr}(A \cap B)$ and $\operatorname{Pr}(A \mid B)$.
(b) Are the events A and B independent? Explain your answer.
5. A box contains two coins: one of the coins is a fair coin and the other one is a two-headed coin.
(a) You pick a coin at random and toss it. What is the probability that it lands heads up?
(b) You pick a coin at random and toss it, and get heads. What is the probability that it is the two-headed coin?
