Solutions to Exam 1

1. Let $(\mathcal{C}, \mathcal{B}, \operatorname{Pr})$ denote a probability space.
(a) State precisely what it means for $E_{1}, E_{2}, E_{3} \in \mathcal{B}$ to be mutually exclusive. Answer: E_{1}, E_{2} and E_{3} are mutually exclusive means that they are pairwise disjoint; that is,

$$
E_{i} \cap E_{j}=\emptyset, \quad \text { for } i \neq j
$$

(b) State precisely what it means for $E_{1}, E_{2}, E_{3} \in \mathcal{B}$ to be mutually independent.

Answer: E_{1}, E_{2} and E_{3} are mutually independent means that they are pairwise independent; that is,

$$
\operatorname{Pr}\left(E_{i} \cap E_{j}\right)=\operatorname{Pr}\left(E_{i}\right) \cdot \operatorname{Pr}\left(E_{j}\right), \quad \text { for } i \neq j
$$

and

$$
\operatorname{Pr}\left(E_{1} \cap E_{2} \cap E_{3}\right)=\operatorname{Pr}\left(E_{1}\right) \cdot \operatorname{Pr}\left(E_{2}\right) \cdot \operatorname{Pr}\left(E_{3}\right)
$$

2. Let $(\mathcal{C}, \mathcal{B}, \operatorname{Pr})$ denote a probability space, and let A and B be elements in the σ-Field \mathcal{B}. Recall that $A \backslash B=\{x \in A \mid x \notin B\}$. Use the additivity property of probability to derive the fact: $\operatorname{Pr}(A \backslash B)=\operatorname{Pr}(A)-\operatorname{Pr}(A \cap B)$.
Provide reasons for the steps in your derivation.
Solution: Observe that

$$
A=(A \cap B) \cup(A \backslash B)
$$

where $A \cap B$ and $A \backslash B$ are disjoint. Hence, by the additivity property of probability,

$$
\operatorname{Pr}(A)=\operatorname{Pr}(A \cap B)+\operatorname{Pr}(A \backslash B)
$$

from which we get that

$$
\operatorname{Pr}(A \backslash B)=\operatorname{Pr}(A)-\operatorname{Pr}(A \cap B)
$$

which was to be shown.
3. Consider a fair six-sided die where one side is labeled 1 , and the others are all labeled 0 . The die is rolled twice in a row. Let A denote the event that the first die is a $1, B$ the event that the second die is a 0 .
(a) Give the elements in the sample space for this experiment.

Solution: The sample space, \mathcal{C} for this experiment is

$$
\mathcal{C}=\{(0,0),(0,1),(1,0),(1,1)\},
$$

where the pair (m, n) indicates that event that the number m comes up in the first toss of the die and the number n comes up in the second toss.
(b) Give the probability, Pr , associated with each of the sample points.

Solution: Compute

$$
\begin{aligned}
\operatorname{Pr}((0,0)) & =\frac{5}{6} \cdot \frac{5}{6}=\frac{25}{36}, \\
\operatorname{Pr}((0,1)) & =\frac{5}{6} \cdot \frac{1}{6}=\frac{5}{36}, \\
\operatorname{Pr}((1,0)) & =\frac{1}{6} \cdot \frac{5}{6}=\frac{5}{36}, \\
\operatorname{Pr}((1,1)) & =\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36},
\end{aligned}
$$

where we have used the fact that the outcomes of the tosses of the die are independent events.
(c) Compute $\operatorname{Pr}(A)$ and $\operatorname{Pr}(B)$.

Solution: Observe that $A=\{(1,0),(1,1)\}$ and $B=\{(0,0),(1,0)\}$. Then, using the probabilities computed in the previous part,

$$
\operatorname{Pr}(A)=\operatorname{Pr}((1,0))+\operatorname{Pr}((1,1))=\frac{5}{36}+\frac{1}{36}=\frac{1}{6},
$$

and

$$
\operatorname{Pr}(B)=\operatorname{Pr}((0,0))+\operatorname{Pr}((1,0))=\frac{25}{36}+\frac{5}{36}=\frac{5}{6} .
$$

4. For the probability space $(\mathcal{C}, \mathcal{B}, \operatorname{Pr})$ and events A and B defined in Problem 3,
(a) compute $\operatorname{Pr}(A \cap B)$ and $\operatorname{Pr}(A \mid B)$.

Solution: First, compute $A \cap B=\{(1,0)\}$ and use the probabilities computed in part (b) of the previous problem to get

$$
\operatorname{Pr}(A \cap B)=\operatorname{Pr}((1,0))=\frac{5}{36}
$$

Next, compute

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}=\frac{\frac{5}{36}}{\frac{5}{6}}=\frac{1}{6}
$$

(b) Are the events A and B independent? Explain your answer.

Solution: Observe that $\operatorname{Pr}(A \mid B)=\operatorname{Pr}(A)$. Hence, A and B are independent.
5. A box contains two coins: one of the coins is a fair coin and the other one is a two-headed coin.
(a) You pick a coin at random and toss it. What is the probability that it lands heads up?
Solution: Let R denote the event that we pick the fair coin, and F the event that we pick the false coin. Then, by the Law of Total Probability, the probability of a head, H, in the flip of the coin that we picked up is

$$
\operatorname{Pr}(H)=\operatorname{Pr}(R) \cdot \operatorname{Pr}(H \mid R)+\operatorname{Pr}(F) \cdot \operatorname{Pr}(H \mid F)
$$

where

$$
\operatorname{Pr}(R)=\frac{1}{2}, \quad \operatorname{Pr}(F)=\frac{1}{2}, \quad \operatorname{Pr}(H \mid R)=\frac{1}{2}, \quad \text { and } \operatorname{Pr}(H \mid F)=1
$$

Then,

$$
\operatorname{Pr}(H)=\frac{1}{2} \cdot \frac{1}{2}+\frac{1}{2} \cdot 1=\frac{3}{4} .
$$

(b) You pick a coin at random and toss it, and get heads. What is the probability that it is the two-headed coin?

Solution: We want $\operatorname{Pr}(F \mid H)$, which we can compute as

$$
\operatorname{Pr}(F \mid H)=\frac{\operatorname{Pr}(F \cap H)}{\operatorname{Pr}(H)}
$$

where

$$
\operatorname{Pr}(H)=\frac{3}{4}
$$

as computed in part (a) of this problem, and

$$
\operatorname{Pr}(F \cap H)=\operatorname{Pr}(F) \cdot \operatorname{Pr}(H \mid F)=\frac{1}{2} \cdot 1=\frac{1}{2} .
$$

Hence,

$$
\operatorname{Pr}(F \mid H)=\frac{\frac{1}{2}}{\frac{3}{4}}=\frac{2}{3}
$$

