Review Problems for Exam 2

(1) A bowl contains 5 chips of the same size and shape. Two chips are red and the other three are blue. Draw three chips from the bowl at random, without replacement. Let X denote the number of blue chips in a drawing.
(a) Give the pmf of X.
(b) Compute $\operatorname{Pr}(X>1)$.
(c) Compute $E(X)$.
(2) Let X have pmf given by $p_{X}(x)=\frac{1}{3}$ for $x=1,2,3$ and $p(x)=0$ elsewhere. Give the pmf of $Y=2 X+1$.
(3) Let

$$
f_{X}(x)= \begin{cases}\frac{1}{x^{2}} & \text { if } 1<x<\infty \\ 0 & \text { if } x \leq 1\end{cases}
$$

be the pdf of a random variable X. If E_{1} denote the interval $(1,2)$ and E_{2} the interval $(4,5)$, compute $\operatorname{Pr}\left(E_{1}\right), \operatorname{Pr}\left(E_{2}\right), \operatorname{Pr}\left(E_{1} \cup E_{2}\right)$ and $\operatorname{Pr}\left(E_{1} \cap E_{2}\right)$.
(4) A mode of a distribution of a random variable X is a value of x that maximizes the pdf or the pmf. If there is only one such value, it is called the mode of the distribution. Find the mode for each of the following distributions:
(a) $p(x)=\left(\frac{1}{2}\right)^{x}$, for $x=1,2,3, \ldots$, and $p(x)=0$, elsewhere.
(b) $f_{X}(x)= \begin{cases}12 x^{2}(1-x), & \text { if } 0<x<1 ; \\ 0, & \text { elsewhere. }\end{cases}$
(5) Let X have pdf

$$
f_{X}(x)= \begin{cases}2 x, & \text { if } 0<x<1 \\ 0, & \text { elsewhere }\end{cases}
$$

Compute the probability that X is at least $3 / 4$, given that X is at least $1 / 2$.
(6) Divide a segment at random into two parts. Find the probability that the largest segment is at least three times the shorter.
(7) Let X have pdf

$$
f_{X}(x)= \begin{cases}x^{2} / 9, & \text { if } 0<x<3 \\ 0, & \text { elsewhere }\end{cases}
$$

Find the pdf of $Y=X^{3}$.
(8) Assume that the random variable X has mgf

$$
\psi_{x}(t)=\frac{e^{t}}{4-3 e^{t}}, \quad \text { for } t<\ln \left(\frac{4}{3}\right)
$$

Compute the expected value, second moment and variance of X.
(9) Let X have mgf given by

$$
\psi_{X}(t)=\frac{1}{3} e^{t}+\frac{2}{3} e^{2 t}, \quad \text { for } t \in \mathbf{R}
$$

(a) Give the distribution of X
(b) Compute the expected value and variance of X.
(10) Let X have mgf given by

$$
f_{X}(x)= \begin{cases}\frac{e^{t}-e^{-t}}{2 t}, & \text { if } t \neq 0 \\ 1, & \text { if } t=0\end{cases}
$$

(a) Give the distribution of X
(b) Compute the expected value and variance of X.

