Solutions to Review Problems for Exam 2

1. A bowl contains 5 chips of the same size and shape. Two chips are red and the other three are blue. Draw three chips from the bowl at random, without replacement. Let X denote the number of blue chips in a drawing.
(a) Give the pmf of X.

Solution: Possible values of X are 1, 2 and 3 .
Compute, using equal likelihood assumption and the fact that the sampling is done without replacement,

$$
\operatorname{Pr}(X=1)=\frac{\binom{3}{1} \cdot\binom{2}{2}}{\binom{5}{3}}=\frac{3}{10}
$$

Similarly

$$
\operatorname{Pr}(X=2)=\frac{\binom{3}{2} \cdot\binom{2}{1}}{\binom{5}{3}}=\frac{3}{5}
$$

and

$$
\operatorname{Pr}(X=3)=\frac{\binom{3}{3} \cdot\binom{2}{0}}{\binom{5}{3}}=\frac{1}{10}
$$

We then have that the pmf of X is

$$
p_{X}(k)= \begin{cases}\frac{3}{10}, & \text { if } k=1 \tag{1}\\ \frac{3}{5}, & \text { if } k=2 \\ \frac{1}{10}, & \text { if } k=3 \\ 0, & \text { elsewhere }\end{cases}
$$

(b) Compute $\operatorname{Pr}(X>1)$.

Solution: Use the definition of the pmf of X in (1) to get

$$
\operatorname{Pr}(X>1)=1-\operatorname{Pr}(X \leqslant 1)=1-p_{X}(1)=\frac{7}{10}
$$

or 70%.
(c) Compute $E(X)$.

Solution: Using the definition of the pmf of X in (1), we compute

$$
\begin{aligned}
E(X) & =\sum_{k=1}^{3} k p_{X}(k) \\
& =1 \cdot \frac{3}{10}+2 \cdot \frac{3}{5}+3 \cdot \frac{1}{10} \\
& =1 \cdot \frac{18}{10}
\end{aligned}
$$

or $E(X)=1.8$.
2. Let X have pmf given by $p_{X}(x)=\frac{1}{3}$ for $x=1,2,3$ and $p(x)=0$ elsewhere. Give the pmf of $Y=2 X+1$.
Solution: Note that the possible values for Y are 3,5 and 7
Compute

$$
\operatorname{Pr}(Y=3)=\operatorname{Pr}(2 X+1=3)=\operatorname{Pr}(X=1)=\frac{1}{3}
$$

Similarly, we get that

$$
\operatorname{Pr}(Y=5)=\operatorname{Pr}(X=2)=\frac{1}{3}
$$

and

$$
\operatorname{Pr}(Y=7)=\operatorname{Pr}(X=3)=\frac{1}{3} .
$$

Thus,

$$
p_{Y}(k)= \begin{cases}\frac{1}{3} & \text { for } k=3,5,7 \\ 0 & \text { elsewhere }\end{cases}
$$

3. Let

$$
f_{X}(x)= \begin{cases}\frac{1}{x^{2}}, & \text { if } 1<x<\infty \\ 0, & \text { if } x \leqslant 1\end{cases}
$$

be the pdf of a random variable X. If E_{1} denote the interval $(1,2)$ and E_{2} the interval $(4,5)$, compute $\operatorname{Pr}\left(E_{1}\right), \operatorname{Pr}\left(E_{2}\right), \operatorname{Pr}\left(E_{1} \cup E_{2}\right)$ and $\operatorname{Pr}\left(E_{1} \cap E_{2}\right)$.
Solution: Compute

$$
\begin{gathered}
\operatorname{Pr}\left(E_{1}\right)=\operatorname{Pr}(1<X<2)=\int_{1}^{2} \frac{1}{x^{2}} d x=-\left.\frac{1}{x}\right|_{1} ^{2}=\frac{1}{2} \\
\operatorname{Pr}\left(E_{2}\right)=\operatorname{Pr}(4<X<5)=\int_{4}^{5} \frac{1}{x^{2}} d x=-\left.\frac{1}{x}\right|_{4} ^{5}=\frac{1}{20} \\
\operatorname{Pr}\left(E_{1} \cup E_{2}\right)=\operatorname{Pr}\left(E_{1}\right)+\operatorname{Pr}\left(E_{2}\right)=\frac{11}{20}
\end{gathered}
$$

since E_{1} and E_{2} are mutually exclusive, and

$$
\operatorname{Pr}\left(E_{1} \cap E_{2}\right)=0
$$

since E_{1} and E_{2} are mutually exclusive.
4. A mode of a distribution of a random variable X is a value of x that maximizes the pdf or the pmf. If there is only one such value, it is called the mode of the distribution. Find the mode for each of the following distributions:
(a) $p(x)=\left(\frac{1}{2}\right)^{x}$ for $x=1,2,3, \ldots$, and $p(x)=0$ elsewhere.

Solution: Note that $p(x)$ is decreasing; so, $p(x)$ is maximized when $x=1$. Thus, 1 is the mode of the distribution of X.
(b) $f(x)= \begin{cases}12 x^{2}(1-x), & \text { if } 0<x<1 ; \\ 0 & \text { elsewhere. }\end{cases}$

Solution: Maximize the function f over $[0,1]$.
Compute

$$
f^{\prime}(x)=24 x(1-x)-12 x^{2}=12 x(2-3 x)
$$

so that f has a critical points at $x=0$ and $x=\frac{2}{3}$.

Since $f(0)=f(1)=0$ and $f(2 / 3)>0$, it follows that f takes on its maximum value on $[0,1]$ at $x=\frac{2}{3}$. Thus, the mode of the distribution of X is $x=\frac{2}{3}$.
5. Let X have pdf

$$
f_{X}(x)= \begin{cases}2 x, & \text { if } 0<x<1 \\ 0, & \text { elsewhere }\end{cases}
$$

Compute the probability that X is at least $3 / 4$, given that X is at least $1 / 2$.
Solution: We are asked to compute

$$
\begin{equation*}
\operatorname{Pr}(X \geqslant 3 / 4 \mid X \geqslant 1 / 2)=\frac{\operatorname{Pr}[(X \geqslant 3 / 4) \cap(X \geqslant 1 / 2)]}{\operatorname{Pr}(X \geqslant 1 / 2)} \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
\operatorname{Pr}(X \geqslant 1 / 2) & =\int_{1 / 2}^{1} 2 x d x \\
& =\left.x^{2}\right|_{1 / 2} ^{1} \\
& =1-\frac{1}{4}
\end{aligned}
$$

so that

$$
\begin{equation*}
\operatorname{Pr}(X \geqslant 1 / 2)=\frac{3}{4} \tag{3}
\end{equation*}
$$

and

$$
\begin{aligned}
\operatorname{Pr}[(X \geqslant 3 / 4) \cap(X \geqslant 1 / 2)] & =\operatorname{Pr}(X \geqslant 3 / 4) \\
& =\int_{3 / 4}^{1} 2 x d x \\
& =\left.x^{2}\right|_{3 / 4} ^{1} \\
& =1-\frac{9}{16}
\end{aligned}
$$

so that

$$
\begin{equation*}
\operatorname{Pr}[(X \geqslant 3 / 4) \cap(X \geqslant 1 / 2)]=\frac{7}{16} . \tag{4}
\end{equation*}
$$

Substituting (4) and (3) into (2) then yields

$$
\operatorname{Pr}(X \geqslant 3 / 4 \mid X \geqslant 1 / 2)=\frac{\frac{7}{16}}{\frac{3}{4}}=\frac{7}{12}
$$

6. Divide a segment at random into two parts. Find the probability that the largest segment is at least three times the shorter.
Solution: Assume the segment is the interval $(0,1)$ and let $X \sim \operatorname{Uniform}(0,1)$. Then X models a random point in $(0,1)$. We have two possibilities: Either $X \leqslant 1-X$ or $X>1-X$; or, equivalently, $X \leqslant \frac{1}{2}$ or $X>\frac{1}{2}$.
Define the events

$$
E_{1}=\left(X \leqslant \frac{1}{2}\right) \quad \text { and } E_{2}=\left(X>\frac{1}{2}\right) .
$$

Observe that $\operatorname{Pr}\left(E_{1}\right)=\frac{1}{2}$ and $\operatorname{Pr}\left(E_{2}\right)=\frac{1}{2}$.
The probability that the largest segment is at least three times the shorter is given by

$$
\operatorname{Pr}\left(E_{1}\right) \operatorname{Pr}\left(1-X>3 X \mid E_{1}\right)+\operatorname{Pr}\left(E_{2}\right) \operatorname{Pr}\left(X>3(1-X) \mid E_{2}\right),
$$

by the Law of Total Probability, where

$$
\operatorname{Pr}\left(1-X>3 X \mid E_{1}\right)=\frac{\operatorname{Pr}\left[(X<1 / 4) \cap E_{1}\right]}{\operatorname{Pr}\left(E_{1}\right)}=\frac{1 / 4}{1 / 2}=\frac{1}{2} .
$$

Similarly,

$$
\operatorname{Pr}\left(X>3(1-X) \mid E_{2}\right)=\frac{\operatorname{Pr}\left[(X>3 / 4) \cap E_{1}\right]}{\operatorname{Pr}\left(E_{2}\right)}=\frac{1 / 4}{1 / 2}=\frac{1}{2} .
$$

Thus, the probability that the largest segment is at least three times the shorter is

$$
\operatorname{Pr}\left(E_{1}\right) \operatorname{Pr}\left(1-X>3 X \mid E_{1}\right)+\operatorname{Pr}\left(E_{2}\right) \operatorname{Pr}\left(X>3(1-X) \mid E_{2}\right)=\frac{1}{2}
$$

7. Let X have pdf

$$
f_{X}(x)= \begin{cases}x^{2} / 9, & \text { if } 0<x<3 \\ 0, & \text { elsewhere }\end{cases}
$$

Find the pdf of $Y=X^{3}$.
Solution: First, compute the cdf of Y

$$
\begin{equation*}
F_{Y}(y)=\operatorname{Pr}(Y \leqslant y) \tag{5}
\end{equation*}
$$

Observe that, since $Y=X^{3}$ and the possible values of X range from 0 to 3 , the values of Y will range from 0 to 27 . Thus, in the calculations that follow, we will assume that $0<y<27$.
From (5) we get that

$$
\begin{aligned}
F_{Y}(y) & =\operatorname{Pr}\left(X^{3} \leqslant y\right) \\
& =\operatorname{Pr}\left(X \leqslant y^{1 / 3}\right) \\
& =F_{X}\left(y^{1 / 3}\right)
\end{aligned}
$$

Thus, for $0<y<27$, we have that

$$
\begin{equation*}
f_{Y}(y)=f_{X}\left(y^{1 / 3}\right) \cdot \frac{1}{3} y^{-3 / 2} \tag{6}
\end{equation*}
$$

where we have applied the Chain Rule.
It follows from (6) and the definition of f_{X} that

$$
\begin{equation*}
f_{Y}(y)=\frac{1}{9}\left[y^{1 / 3}\right]^{2} \cdot \frac{1}{3} y^{-3 / 2}=\frac{1}{27}, \quad \text { for } 0<y<27 . \tag{7}
\end{equation*}
$$

Combining (7) and the definition of f_{X} we obtain the pdf for Y :

$$
f_{Y}(y)= \begin{cases}\frac{1}{27}, & \text { for } 0<y<27 \\ 0 & \text { elsewhere }\end{cases}
$$

in other words, $Y \sim \operatorname{Uniform}(0,27)$.
8. Assume that the random variable X has mgf

$$
\begin{equation*}
\psi_{X}(t)=\frac{e^{t}}{4-3 e^{t}}, \quad \text { for } t<\ln \left(\frac{4}{3}\right) \tag{8}
\end{equation*}
$$

Compute the expected value, second moment and variance of X.
Solution: Write the mgf of X in (8) as

$$
\psi_{x}(t)=\left(4 e^{-t}-3\right)^{-1}, \quad \text { for } t<\ln \left(\frac{4}{3}\right)
$$

and differentiate with respect to t to get

$$
\psi_{x}^{\prime}(t)=(-1)\left(4 e^{-t}-3\right)^{-2} \cdot\left(-4 e^{-t}\right), \quad \text { for } t<\ln \left(\frac{4}{3}\right)
$$

where we have used the Chain Rule, or

$$
\begin{equation*}
\psi_{x}^{\prime}(t)=4 e^{-t}\left(4 e^{-t}-3\right)^{-2}, \quad \text { for } t<\ln \left(\frac{4}{3}\right) \tag{9}
\end{equation*}
$$

and, using the product rule,

$$
\psi_{X}^{\prime \prime}(t)=-4 e^{-t}\left(4 e^{-t}-3\right)^{-2}-2\left(4 e^{t}\right)\left(4 e^{-t}-3\right)^{-3} \cdot\left(-4 e^{-t}\right), \quad \text { for } t<\ln \left(\frac{4}{3}\right)
$$

which simplifies to

$$
\begin{aligned}
\psi_{x}^{\prime \prime}(t) & \left.=-4 e^{-t}\left(4 e^{-t}-3\right)^{-2}-2\left(4 e^{t}\right) 4 e^{-t}-3\right)^{-3} \cdot\left(-4 e^{-t}\right) \\
& =2\left(4 e^{-t}\right)^{2}\left(4 e^{-t}-3\right)^{-3}-4 e^{-t}\left(4 e^{-t}-3\right)^{-2} \\
& =4 e^{-t}\left(4 e^{-t}-3\right)^{-3}\left(8 e^{-t}-\left(4 e^{-t}-3\right)\right)
\end{aligned}
$$

or

$$
\begin{equation*}
\psi_{x}^{\prime \prime}(t)=4 e^{-t}\left(4 e^{-t}-3\right)^{-3}\left(4 e^{-t}+3\right), \quad \text { for } t<\ln \left(\frac{4}{3}\right) . \tag{10}
\end{equation*}
$$

Using (9) and (10) we then compute

$$
\begin{gathered}
E(X)=\psi_{X}^{\prime}(0)=4 \\
E\left(X^{2}\right)=\psi_{X}^{\prime \prime}(0)=28
\end{gathered}
$$

and

$$
\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}=28-16=12
$$

9. Let X have mgf given by

$$
\begin{equation*}
\psi_{x}(t)=\frac{1}{3} e^{t}+\frac{2}{3} e^{2 t}, \quad \text { for } t \in \mathbb{R} \tag{11}
\end{equation*}
$$

(a) Give the distribution of X

Solution: The mgf in (11) corresponds to a discrete random variable with pmf

$$
p_{X}(k)= \begin{cases}\frac{1}{3}, & \text { if } k=1 \\ \frac{2}{3}, & \text { if } k=2 \\ 0, & \text { elsewhere }\end{cases}
$$

(b) Compute the expected value and variance of X.

Solution: Compute the derivatives of the mgf in (11) to get

$$
\begin{equation*}
\psi_{x}^{\prime}(t)=\frac{1}{3} e^{t}+\frac{4}{3} e^{2 t}, \quad \text { for } t \in \mathbb{R}, \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi_{x}^{\prime \prime}(t)=\frac{1}{3} e^{t}+\frac{8}{3} e^{2 t}, \quad \text { for } t \in \mathbb{R} \tag{13}
\end{equation*}
$$

Using (12) and (13) we then obtain

$$
\begin{aligned}
& E(X)=\psi_{x}^{\prime}(0)=\frac{5}{3}, \\
& E\left(X^{2}\right)=\psi_{x}^{\prime \prime}(0)=3 .
\end{aligned}
$$

Thus, the variance of X is

$$
\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}=3-\frac{25}{9}=\frac{2}{9}
$$

10. Let X have mgf given by

$$
f_{X}(x)= \begin{cases}\frac{e^{t}-e^{-t}}{2 t}, & \text { if } t \neq 0 \tag{14}\\ 1, & \text { if } t=0\end{cases}
$$

(a) Give the distribution of X

Solution: Looking at the handout on special distributions we see that the mgf given in (14) corresponds to that of a Uniform $(-1,1)$ random variable. Thus, by the mgf Uniqueness Theorem, $X \sim \operatorname{Uniform}(-1,1)$, Consequently, the pdf of X is given by

$$
f_{X}(x)= \begin{cases}\frac{1}{2}, & \text { if }-1<x<1 \\ 0, & \text { elsewhere }\end{cases}
$$

(b) Compute the expected value and variance of X.

Solution: The expected value and variance of X can also be obtained by reading the Special Distributions handout:

$$
E(X)=\frac{-1+1}{2}=0
$$

and

$$
\operatorname{Var}(X)=\frac{(1-(-1))^{2}}{12}=\frac{4}{12}=\frac{1}{3}
$$

