Review Problems for Exam 3

(1) A random point (X, Y) is distributed uniformly on the square with vertices $(-1,-1)$, $(1,-1),(1,1)$ and $(-1,1)$.
(a) Give the joint pdf for X and Y.
(b) Compute the following probabilities: (i) $\operatorname{Pr}\left(X^{2}+Y^{2}<1\right)$, (ii) $\operatorname{Pr}(2 X-Y>0)$, (iii) $\operatorname{Pr}(|X+Y|<2)$.
(2) The random pair (X, Y) has the joint distribution

$\mathrm{X} \backslash \mathrm{Y}$	2	3	4
1	$\frac{1}{12}$	$\frac{1}{6}$	0
2	$\frac{1}{6}$	0	$\frac{1}{3}$
3	$\frac{1}{12}$	$\frac{1}{6}$	0

(a) Show that X and Y are not independent.
(b) Give a probability table for random variables U and V that have the same marginal distributions as X and Y, respectively, but are independent.
(3) An experiment consists of independent tosses of a fair coin. Let X denote the number of trials needed to obtain the first head, and let Y be the number of trials needed to get two heads in repeated tosses. Are X and Y independent random variables?
(4) Let $g(t)$ denote a non-negative, integrable function of a single variable with the property that

$$
\int_{0}^{\infty} g(t) d t=1
$$

Define

$$
f(x, y)= \begin{cases}\frac{2 g\left(\sqrt{x^{2}+y^{2}}\right)}{\pi \sqrt{x^{2}+y^{2}}} & \text { for } 0<x<\infty, 0<y<\infty \\ 0 & \text { otherwise }\end{cases}
$$

Show that $f(x, y)$ is a joint pdf for two random variables X and Y.
(5) Suppose that two persons make an appointment to meet between 5 PM and 6 PM at a certain location and they agree that neither person will wait more than 10 minutes for each person. If they arrive independently at random times between 5 PM and 6 PM, what is the probability that they will meet?
(6) Assume that the number of calls coming per minute into a hotel's reservation center follows a Poisson distribution with mean 3.
(a) Find the probability that no calls come in a given 1 minute period.
(b) Assume that the number of calls arriving in two different minutes are independent. Find the probability that at least two calls will arrive in a given two minute period.
(7) Let $Y \sim \operatorname{Binomial}(100,1 / 2)$. Use the Central Limit Theorem to estimate the value of $\operatorname{Pr}(Y=50)$.
Suggestion: Observe that $\operatorname{Pr}(Y=50)=\operatorname{Pr}(49.5<Y \leq 50.5)$, since Y is discrete.
(8) Roll a balanced die 36 times. Let Y denote the sum of the outcomes in each of the 36 rolls. Estimate the probability that $108 \leq Y \leq 144$.
Suggestion: Since the event of interest is $(Y \in\{108,109, \ldots, 144\})$, rewrite

$$
\operatorname{Pr}(108 \leq Y \leq 144) \text { as } \operatorname{Pr}(107.5<Y \leq 144.5) .
$$

(9) Forty nine digits are chosen at random and with replacement from $\{0,1,2, \ldots, 9\}$. Estimate the probability that their average lies between 4 and 6 .
(10) Let $X_{1}, X_{2}, \ldots, X_{30}$ be independent random variables each having a discrete distribution with pmf: $p(x)=1 / 4$, if $x=0$ or $x=2 ; p(x)=1 / 2$, if $x=1 ; p(x)=0$ elsewhere.
Estimate the probability that $X_{1}+X_{2}+\cdots+X_{30}$ is at most 33 .

