Solutions to Review Problems for Exam 3

1. A random point (X, Y) is distributed uniformly on the square with vertices $(-1,-1),(1,-1),(1,1)$ and $(-1,1)$.
(a) Give the joint pdf for X and Y.
(b) Compute the following probabilities:
(i) $\operatorname{Pr}\left(X^{2}+Y^{2}<1\right)$,
(ii) $\operatorname{Pr}(2 X-Y>0)$,
(iii) $\operatorname{Pr}(|X+Y|<2)$.

Solution: The square is pictured in Figure 1 and has area 4.

Figure 1: Sketch of square in Problem 1
(a) Consequently, the joint pdf of (X, Y) is given by

$$
f_{(X, Y)}(x, y)= \begin{cases}\frac{1}{4}, & \text { for }-1<x<1,-1<y<1 \tag{1}\\ 0 & \text { elsewhere }\end{cases}
$$

(b) Denoting the square in Figure 1 by R, it follows from (1) that, for any subset A of \mathbb{R}^{2},

$$
\begin{equation*}
\operatorname{Pr}[(x, y) \in A]=\iint_{A} f_{(X, Y)}(x, y) d x d y=\frac{1}{4} \cdot \operatorname{area}(A \cap R) \tag{2}
\end{equation*}
$$

that is, $\operatorname{Pr}[(x, y) \in A]$ is one-fourth the area of the portion of A in R.
We will use the formula in (2) to compute each of the probabilities in (i), (ii) and (iii).
(i) In this case, A is the circle of radius 1 around the origin in \mathbb{R}^{2} and pictured in Figure 2.

Figure 2: Sketch of A in Problem 1(b)(i)
Note that the circle A in Figure 2 is entirely contained in the square R so that, by the formula in (2),

$$
\operatorname{Pr}\left(X^{2}+Y^{2}<1\right)=\frac{\operatorname{area}(A)}{4}=\frac{\pi}{4}
$$

(ii) The set A in this case is pictured in Figure 3 on page 3. Thus, in this case, $A \cap R$ is a trapezoid of area $2 \cdot \frac{\frac{1}{2}+\frac{3}{2}}{2}=2$, so that, by the formula in (2),

$$
\operatorname{Pr}(2 X-Y>0)=\frac{1}{4} \cdot \operatorname{area}(A \cap R)=\frac{1}{2}
$$

Figure 3: Sketch of A in Problem 1(b)(ii)
(iii) In this case, A is the region in the $x y$-plane between the lines $x+y=2$ and $x+y=-2$ (see Figure 4 on page 4). Thus, $A \cap R$ is R so that, by the formula in (2),

$$
\operatorname{Pr}(|X+Y|<2)=\frac{\operatorname{area}(R)}{4}=1
$$

2. The random pair (X, Y) has the joint distribution shown in Table 1.

$X \backslash Y$	2	3	4
1	$\frac{1}{12}$	$\frac{1}{6}$	0
2	$\frac{1}{6}$	0	$\frac{1}{3}$
3	$\frac{1}{12}$	$\frac{1}{6}$	0

Table 1: Joint Probability Distribution for X and $Y, p_{(X, Y)}$
(a) Show that X and Y are not independent.

Figure 4: Sketch of A in Problem 1(b)(iii)

$X \backslash Y$	2	3	4	p_{X}
1	$\frac{1}{12}$	$\frac{1}{6}$	0	$\frac{1}{4}$
2	$\frac{1}{6}$	0	$\frac{1}{3}$	$\frac{1}{2}$
3	$\frac{1}{12}$	$\frac{1}{6}$	0	$\frac{1}{4}$
p_{Y}	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	1

Table 2: Joint pdf for X and Y and marginal distributions p_{X} and p_{Y}
Solution: Table 2 shows the marginal distributions of X and Y on the margins.
Observe from Table 2 that

$$
p_{(X, Y)}(1,4)=0,
$$

while

$$
p_{X}(1)=\frac{1}{4} \quad \text { and } \quad p_{Y}(4)=\frac{1}{3} .
$$

Thus,

$$
p_{X}(1) \cdot p_{Y}(4)=\frac{1}{12}
$$

so that

$$
p_{(X, Y)}(1,4) \neq p_{X}(1) \cdot p_{Y}(4),
$$

and, therefore, X and Y are not independent.
(b) Give a probability table for random variables U and V that have the same marginal distributions as X and Y, respectively, but are independent.
Solution: Table 3 on page 5 shows the joint pmf of (U, V) and the marginal distributions, p_{U} and p_{V}.

$U \backslash V$	2	3	4	p_{U}
1	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{4}$
2	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{2}$
3	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{4}$
p_{V}	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	1

Table 3: Joint pdf for U and V and their marginal distributions.
3. An experiment consists of independent tosses of a fair coin. Let X denote the number of trials needed to obtain the first head, and let Y be the number of trials needed to get two heads in repeated tosses. Are X and Y independent random variables?
Solution: X has a geometric distribution with parameter $p=\frac{1}{2}$, so that

$$
\begin{equation*}
p_{X}(k)=\frac{1}{2^{k}}, \quad \text { for } k=1,2,3, \ldots \tag{3}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\operatorname{Pr}[Y=2]=\frac{1}{4} \tag{4}
\end{equation*}
$$

since, in two repeated tosses of a coin, the events are $H H, H T, T H$ and $T T$, and these events are equally likely.
Next, consider the joint event ($X=2, Y=2$). Note that

$$
(X=2, Y=2)=[X=2] \cap[Y=2]=\emptyset,
$$

since $[X=2]$ corresponds to the event $T H$, while $[Y=2]$ to the event $H H$. Thus,

$$
\operatorname{Pr}(X=2, Y=2)=0
$$

while

$$
p_{X}(2) \cdot p_{Y}(2)=\frac{1}{4} \cdot \frac{1}{4}=\frac{1}{16},
$$

by (3) and (4). Thus,

$$
p_{(X, Y)}(2,2) \neq p_{X}(2) \cdot p_{X}(2)
$$

Hence, X and Y are not independent.
4. Let $g(t)$ denote a non-negative, integrable function of a single variable with the property that

$$
\int_{0}^{\infty} g(t) \mathrm{d} t=1
$$

Define

$$
f(x, y)= \begin{cases}\frac{2 g\left(\sqrt{x^{2}+y^{2}}\right)}{\pi \sqrt{x^{2}+y^{2}}}, & \text { for } 0<x<\infty, 0<y<\infty \\ 0, & \text { otherwise }\end{cases}
$$

Show that $f(x, y)$ is a joint pdf for two random variables X and Y.
Solution: First observe that f is non-negative since g is non-negative. Next, compute

$$
\iint_{\mathbb{R}^{2}} f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{0}^{\infty} \int_{0}^{\infty} \frac{2 g\left(\sqrt{x^{2}+y^{2}}\right)}{\pi \sqrt{x^{2}+y^{2}}} \mathrm{~d} x \mathrm{~d} y .
$$

Switching to polar coordinates we then get that

$$
\begin{aligned}
\iint_{\mathbb{R}^{2}} f(x, y) \mathrm{d} x \mathrm{~d} y & =\int_{0}^{\pi / 2} \int_{0}^{\infty} \frac{2 g(r)}{\pi r} r \mathrm{~d} r \mathrm{~d} \theta \\
& =\frac{\pi}{2} \int_{0}^{\infty} \frac{2}{\pi} g(r) \mathrm{d} r \\
& =\int_{0}^{\infty} g(r) \mathrm{d} r \\
& =1
\end{aligned}
$$

therefore, $f(x, y)$ is indeed a joint pdf for two random variables X and Y.
5. Suppose that two persons make an appointment to meet between 5 PM and 6 PM at a certain location and they agree that neither person will wait more than 10 minutes for each person. If they arrive independently at random times between 5 PM and 6 PM , what is the probability that they will meet?
Solution: Let X denote the arrival time of the first person and Y that of the second person. Then X and Y are independent and uniformly distributed on the interval (5 PM, 6 PM), in hours. It then follows that the joint pdf of X and Y is

$$
f_{(X, Y)}(x, y)= \begin{cases}1, & \text { if } 5 \mathrm{PM}<x<6 \mathrm{PM}, 5 \mathrm{PM}<x<6 \mathrm{PM} \\ 0, & \text { elsewhere }\end{cases}
$$

Define $W=|X-Y|$; this is the time that one person would have to wait for the other one. Then, W takes on values, w, between 0 and 1 (in hours). The probability that that a person would have to wait more than 10 minutes is

$$
\operatorname{Pr}(W>1 / 6),
$$

since the time is being measured in hours. It then follows that the probability that the two persons will meet is

$$
1-\operatorname{Pr}(W>1 / 6)=\operatorname{Pr}(W \leqslant 1 / 6)=F_{W}(1 / 6)
$$

We will therefore need to find the cdf of W. To do this, we compute

$$
\begin{aligned}
\operatorname{Pr}(W \leqslant w) & =\operatorname{Pr}(|X-Y| \leqslant w), \quad \text { for } 0<w<1, \\
& =\iint_{A} f_{(X, Y)}(x, y) \mathrm{d} x \mathrm{~d} y
\end{aligned}
$$

where A is the event

$$
A=\left\{(x, y) \in \mathbb{R}^{2}|5 \mathrm{PM}<x<6 \mathrm{PM}, 5 \mathrm{PM}<y<6 \mathrm{PM},|x-y| \leqslant w\}\right.
$$

This event is pictured in Figure 5.
We then have that

$$
\begin{aligned}
\operatorname{Pr}(W \leqslant w) & =\iint_{A} \mathrm{~d} x \mathrm{~d} y \\
& =\operatorname{area}(A)
\end{aligned}
$$

Figure 5: Event A in the $x y$-plane
where the area of A can be computed by subtracting from 1 the area of the two corner triangles shown in Figure 5:

$$
\begin{aligned}
\operatorname{Pr}(W \leqslant w) & =1-(1-w)^{2} \\
& =2 w-w^{2}
\end{aligned}
$$

Consequently, $F_{w}(w)=2 w-w^{2}$ for $0<w<1$. Thus the probability that the two persons will meet is

$$
F_{W}(1 / 6)=2 \cdot \frac{1}{6}-\left(\frac{1}{6}\right)^{2}=\frac{11}{36}
$$

or about 30.56%.
6. Assume that the number of calls coming per minute into a hotel's reservation center follows a Poisson distribution with mean 3.
(a) Find the probability that no calls come in a given 1 minute period.

Solution: Let Y denote the number of calls that come to the hotel's reservation center in one minute. Then, $Y \sim \operatorname{Poisson}(3)$; so that,

$$
p_{Y}(k)=\frac{3^{k}}{k!} e^{-3}, \quad \text { for } k=0,1,2, \ldots
$$

Then, the probability that no calls will come in the given minute is

$$
\operatorname{Pr}(Y=0)=p_{Y}(0)=e^{-3} \approx 0.05
$$

or about 5%.
(b) Assume that the number of calls arriving in two different minutes are independent. Find the probability that at least two calls will arrive in a given two minute period.
Solution: Let Y_{1} denote the number of calls that arrive in one minute and Y_{2} denote the number of calls that arrive in another minute. We then have that

$$
Y_{i} \sim \operatorname{Poisson}(3), \quad \text { for } i=1,2
$$

and Y_{i} and Y_{2} are independent. We want to compute

$$
\operatorname{Pr}\left(Y_{1}+Y_{2} \geqslant 2\right)
$$

To do this, we determine the distribution of $W=Y_{1}+Y_{2}$.
Since Y_{1} and Y_{2} are independent,

$$
\psi_{W}(t)=\psi_{Y_{1}+Y_{2}}(t)=\psi_{Y_{1}}(t) \cdot \psi_{Y_{2}}(t) ;
$$

so that,

$$
\psi_{W}(t)=e^{3\left(e^{t}-1\right)} \cdot e^{3\left(e^{t}-1\right)}=e^{6\left(e^{t}-1\right)}
$$

which is the mgf of a Poisson(6) distribution. Thus, by the mgf Uniqueness Theorem, $W \sim$ Poisson(6). We then have that

$$
p_{W}(k)=\frac{6^{k}}{k!} e^{-6}, \quad \text { for } k=0,1,2, \ldots
$$

Therefore,

$$
\begin{aligned}
\operatorname{Pr}\left(Y_{1}+Y_{2} \geqslant 2\right) & =\operatorname{Pr}(W \geqslant 2) \\
& =1-\operatorname{Pr}(W<2) \\
& =1-\operatorname{Pr}(W=0)-\operatorname{Pr}(W=1) \\
& =1-e^{-6}-6 e^{-6} \\
& =1-\frac{7}{e^{6}} \\
& \approx 0.9826 .
\end{aligned}
$$

Hence, the probability that at least two calls will arrive in a given two minute period is about 98.3%.
7. Let $Y \sim \operatorname{Binomial}(100,1 / 2)$. Use the Central Limit Theorem to estimate the value of $\operatorname{Pr}(Y=50)$.

Suggestion: Observe that $\operatorname{Pr}(Y=50)=\operatorname{Pr}(49.5<Y \leq 50.5)$, since Y is discrete.
Solution: We use the Central Limit Theorem to estimate

$$
\operatorname{Pr}(49.5<Y \leqslant 50.5)
$$

By the Central Limit Theorem,

$$
\begin{equation*}
\operatorname{Pr}(49.5<Y \leqslant 50.5) \approx \operatorname{Pr}\left(\frac{49.5-n \mu}{\sqrt{n} \sigma}<Z \leqslant \frac{50.5-n \mu}{\sqrt{n} \sigma}\right) \tag{5}
\end{equation*}
$$

where $Z \sim \operatorname{Normal}(0,1), n=100$, and $n \mu=50$ and

$$
\sigma=\sqrt{\frac{1}{2}\left(1-\frac{1}{2}\right)}=\frac{1}{2}
$$

We then obtain from (5) that

$$
\begin{aligned}
\operatorname{Pr}(49.5<Y \leqslant 50.5) & \approx \operatorname{Pr}(-0.1<Z \leqslant 0.1) \\
& \approx F_{Z}(0.1)-F_{Z}(-0.1) \\
& \approx 2 F_{z}(0.1)-1 \\
& \approx 2(0.5398)-1 \\
& \approx 0.0796
\end{aligned}
$$

Thus,

$$
\operatorname{Pr}(Y=50) \approx 0.08
$$

or about 8%.
8. Roll a balanced die 36 times. Let Y denote the sum of the outcomes in each of the 36 rolls. Estimate the probability that $108 \leq Y \leq 144$.
Suggestion: Since the event of interest is $(Y \in\{108,109, \ldots, 144\})$, rewrite $\operatorname{Pr}(108 \leq Y \leq 144)$ as

$$
\operatorname{Pr}(107.5<Y \leqslant 144.5)
$$

Solution: Let $X_{1}, X_{2}, \ldots, X_{n}$, where $n=36$, denote the outcomes of the 36 rolls. Since we are assuming that the die is balanced, the random variables $X_{1}, X_{2}, \ldots, X_{n}$ are identically uniformly distributed over the digits $\{1,2, \ldots, 6\}$; in other words, $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from the discrete Uniform(6) distribution. Consequently, the mean of the distribution is

$$
\begin{equation*}
\mu=\frac{6+1}{2}=3.5 \tag{6}
\end{equation*}
$$

and the variance is

$$
\begin{equation*}
\sigma^{2}=\frac{(6+1)(6-1)}{12}=\frac{35}{12} \tag{7}
\end{equation*}
$$

We also have that

$$
Y=\sum_{k=1}^{n} X_{k}
$$

where $n=36$.

By the Central Limit Theorem,

$$
\begin{equation*}
\operatorname{Pr}(107.5<Y \leqslant 144.5) \approx \operatorname{Pr}\left(\frac{107.5-n \mu}{\sqrt{n} \sigma}<Z \leqslant \frac{144.5-n \mu}{\sqrt{n} \sigma}\right) \tag{8}
\end{equation*}
$$

where $Z \sim \operatorname{Normal}(0,1), n=36$, and μ and σ are given in (6) and (7), respectively. We then have from (8) that

$$
\begin{aligned}
\operatorname{Pr}(107.5<Y \leqslant 144.5) & \approx \operatorname{Pr}(-1.81<Z \leqslant 1.81) \\
& \approx F_{Z}(1.81)-F_{Z}(-1.81) \\
& \approx 2 F_{z}(1.81)-1 \\
& \approx 2(0.9649)-1 \\
& \approx 0.9298
\end{aligned}
$$

so that the probability that $108 \leqslant Y \leqslant 144$ is about 93%.
9. Forty nine digits are chosen at random and with replacement from $\{0,1,2, \ldots, 9\}$. Estimate the probability that their average lies between 4 and 6 .

Solution: Let $X_{1}, X_{2}, \ldots, X_{n}$, where $n=49$, denote the 49 digits. Since the sampling is done without replacement, the random variables $X_{1}, X_{2}, \ldots, X_{n}$ are identically uniformly distributed over the digits $\{0,1,2, \ldots, 9\}$ with pmf given by

$$
p_{X}(k)= \begin{cases}\frac{1}{10}, & \text { for } k=0,1,2, \ldots, 9 \tag{9}\\ 0, & \text { elsewhere }\end{cases}
$$

Consequently, the mean of the distribution is

$$
\begin{equation*}
\mu=\sum_{k=0}^{9} k p_{X}(k)=\frac{1}{10} \sum_{k=1}^{9} k=\frac{1}{10} \cdot \frac{9 \cdot 10}{2}=\frac{9}{2} . \tag{10}
\end{equation*}
$$

Before we compute the variance, we first compute the second moment of X :

$$
E\left(X^{2}\right)=\sum_{k=0}^{9} k^{2} p_{X}(k)=\sum_{k=1}^{9} k^{2} p_{X}(k) ;
$$

thus, using the pmf of X in (9),

$$
\begin{aligned}
E\left(X^{2}\right) & =\frac{1}{10} \sum_{k=1}^{9} k^{2} \\
& =\frac{1}{10} \cdot \frac{9 \cdot(9+1)(2 \cdot 9+1)}{6} \\
& =\frac{3 \cdot(19)}{2} \\
& =\frac{57}{2}
\end{aligned}
$$

Thus, the variance of X is

$$
\begin{aligned}
\sigma^{2} & =E\left(X^{2}\right)-\mu^{2} \\
& =\frac{57}{2}-\frac{81}{4} \\
& =\frac{33}{4}
\end{aligned}
$$

so that

$$
\begin{equation*}
\sigma^{2}=8.25 \tag{11}
\end{equation*}
$$

We would like to estimate

$$
\operatorname{Pr}\left(4 \leqslant \bar{X}_{n} \leqslant 6\right)
$$

or

$$
\operatorname{Pr}\left(4-\mu \leqslant \bar{X}_{n}-\mu \leqslant 6-\mu\right)
$$

where μ is given in (10), so that

$$
\begin{equation*}
\operatorname{Pr}\left(4 \leqslant \bar{X}_{n} \leqslant 6\right)=\operatorname{Pr}\left(-0.5 \leqslant \bar{X}_{n}-\mu \leqslant 1.5\right) \tag{12}
\end{equation*}
$$

Next, divide the last inequality in (12) by σ / \sqrt{n}, where σ is as given in (11), to get

$$
\begin{equation*}
\operatorname{Pr}\left(4 \leqslant \bar{X}_{n} \leqslant 6\right) \doteq \operatorname{Pr}\left(-1.22 \leqslant \frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}} \leqslant 3.66\right) \tag{13}
\end{equation*}
$$

Since $n=49$ can be considered a large sample size, we can apply the Central Limit Theorem to obtain from (13) that

$$
\begin{equation*}
\operatorname{Pr}\left(4 \leqslant \bar{X}_{n} \leqslant 6\right) \approx \operatorname{Pr}(-1.22 \leqslant Z \leqslant 3.66), \quad \text { where } Z \sim \operatorname{Normal}(0,1) \tag{14}
\end{equation*}
$$

It follows from (14) and the definition of the cdf that

$$
\begin{equation*}
\operatorname{Pr}\left(4 \leqslant \bar{X}_{n} \leqslant 6\right) \approx F_{z}(3.66)-F_{z}(-1.22) \tag{15}
\end{equation*}
$$

where F_{Z} is the cdf of $Z \sim \operatorname{Normal}(0,1)$. Using the symmetry of the pdf of $Z \sim \operatorname{Normal}(0,1)$, we can rewrite (15) as

$$
\begin{equation*}
\operatorname{Pr}\left(4 \leqslant \bar{X}_{n} \leqslant 6\right) \approx F_{z}(1.22)+F_{z}(3.66)-1 \tag{16}
\end{equation*}
$$

Finally, using a table of standard normal probabilities, we obtain from (16) that

$$
\operatorname{Pr}\left(4 \leqslant \bar{X}_{n} \leqslant 6\right) \approx 0.8888+1-1=0.8888
$$

Thus, the probability that the average of the 49 digits is between 4 and 6 is about 88.9%.
10. Let $X_{1}, X_{2}, \ldots, X_{30}$ be independent random variables each having a discrete distribution with pmf:

$$
p(x)= \begin{cases}1 / 4, & \text { if } x=0 \text { or } x=2 \\ 1 / 2, & \text { if } x=1 \\ 0, & \text { otherwise }\end{cases}
$$

Estimate the probability that $X_{1}+X_{2}+\cdots+X_{30}$ is at most 33 .
Solution: First, compute the mean, $\mu=E(X)$, and variance, $\sigma^{2}=\operatorname{Var}(X)$, of the distribution:

$$
\begin{gather*}
\mu=0 \cdot \frac{1}{4}+1 \cdot \frac{1}{2}+2 \frac{1}{4}=1 \tag{17}\\
\sigma^{2}=E\left(X^{2}\right)-[E(X)]^{2} \tag{18}
\end{gather*}
$$

where

$$
\begin{equation*}
E\left(X^{2}\right)=0^{2} \cdot \frac{1}{4}+1^{2} \cdot \frac{1}{2}+2^{2} \frac{1}{4}=1.5 \tag{19}
\end{equation*}
$$

so that, combining (17), (18) and (19),

$$
\begin{equation*}
\sigma^{2}=1.5-1=0.5 \tag{20}
\end{equation*}
$$

Next, let $Y=\sum_{k=1}^{n} X_{k}$, where $n=30$. We would like to estimate

$$
\operatorname{Pr}[Y \leqslant 33]
$$

using the continuity correction,

$$
\begin{equation*}
\operatorname{Pr}[Y \leqslant 33.5] \tag{21}
\end{equation*}
$$

By the Central Limit Theorem

$$
\begin{equation*}
\operatorname{Pr}\left(\frac{Y-n \mu}{\sqrt{n} \sigma} \leqslant\right) \approx \operatorname{Pr}(Z \leqslant z), \quad \text { for } z \in \mathbb{R} \tag{22}
\end{equation*}
$$

where $Z \sim \operatorname{Normal}(0,1), \mu=1, \sigma^{2}=1.5$ and $n=30$. It follows from (22) that we can estimate the probability in (21) by

$$
\begin{equation*}
\operatorname{Pr}[Y \leqslant 33.5] \approx \operatorname{Pr}(Z \leqslant 0.52) \doteq 0.6985 \tag{23}
\end{equation*}
$$

Thus, according to (23), the probability that $X_{1}+X_{2}+\cdots+X_{30}$ is at most 33 is about 70%.

