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Solutions to Review Problems for Exam #1

1. Modeling the Spread of a Disease. In a simple model for a disease that
is spread through infections transmitted between individuals in a population,
the population is divided into three compartments pictured in Figure 1. The

- -S(t) I(t) R(t)

Figure 1: SIR Compartments

first compartment, S(t), denotes the set of individuals in a population that are
susceptible to acquiring the disease; the second compartment, I(t), denotes the
set of infected individual who can also infect others; and the third compartment,
R(t), denotes the set of individuals who had the disease and who have recovered
from it; they can no longer get infected.

Assume that the total number of individuals in the population,

N = S(t) + I(t) +R(t),

is constant. Susceptible individuals can get infected by contact with infectious
individuals and move to the infected class. This is indicated by the arrow going
from the S(t) compartment to the I(t) compartment.

The rate at which susceptible individuals get infected is proportional to product
of number of susceptible individuals and the number of infected individuals
with constant of proportionality β > 0. The rate at which infected individuals
recover is proportional to the number of infected individuals with constant of
proportionality γ > 0. What are the units for β and γ?

Use conservation principles to derive a system of differential equations for the
functions S, I and R, assuming that they are differentiable. Models of this type
were first studied by Kermack and McKendrick in the early 1930s.

Introduce dimensionless variables

ŝ(t) =
S(t)

N
, î(t) =

I(t)

N
, r̂(t) =

R(t)

N
, and t̂ =

t

τ
, (1)
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for some scaling factor, τ , in units of time, in order to write the system in
dimensionless form.

Solution: Using conservation principles on each of the compartments, we ob-
tain the system of ordinary differential equations

dS

dt
= −βSI;

dI

dt
= βSI − γI;

dR

dt
= γI.

(2)

It follows from the equations in (2) that β has units of 1/[time × individual],
while γ has units of 1/time.

Next, use the change of variables in (1) and the Chain Rule to obtain from the
first equation in (2) that

dŝ

dt̂
=

dŝ

dt
· dt
dt̂

=
τ

N

dS

dt

= − τ

N
βSI,

so that, using (1) again,
dŝ

dt̂
= −βτN ŝ î. (3)

Similar calculations for the second equation in (2) yield

d̂i

dt̂
= βτN ŝ î− γτ î; (4)

and, for the third equation in (4),

dr̂

dt̂
= γτ î. (5)

Define the dimensionless parameter

βτN = Ro, (6)
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and set
γτ = 1,

so tat

τ =
1

γ
, (7)

and

Ro =
βN

γ
, (8)

by virtue of (6).

Next, substitute (6) and (7) into the equations in (3), (4) and (5) to obtain the
dimensionless system 

dŝ

dt̂
= −Ro ŝ î;

d̂i

dt̂
= Ro ŝ î− î;

dr̂

dt̂
= î.

(9)

If we stipulate from the outset that t is measured in units of 1/γ and s, i and
r are measures in fractions of the total population, N , then the system in (9)
can be written in simpler form as

ds

dt
= −Rosi;

di

dt
= Rosi− i;

dr

dt
= i,

which depends on the single dimensionless parameter, Ro, given in (8). �

2. Modeling Traffic Flow. Consider the initial value problem
∂u

∂t
+ g′(u)

∂u

∂x
= 0;

u(x, 0) = f(x),

(10)
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where
g(u) = u(1− u), (11)

and the initial condition f is given by

f(x) =


1, if x < −1;

1

2
(1− x), if − 1 6 x < 1;

0, if x > 1.

(12)

(a) Sketch the characteristic curves of the partial differential equation.

Solution: The equation for the characteristic curves is given by

dx

dt
= g′(u). (13)

On characteristic curves, a solution, u, to the partial differential equation
in (10) satisfies the ordinary differential equation

du

dt
= 0,

which shows that u is constant along characteristic curves. We write

u(x, t) = ϕ(k), (14)

where ϕ(k) is the constant value of u on the characteristic indexed by k.

Using the value for u in (14), the equation for the characteristic curves in
(13) can be re–written as

dx

dt
= g′(ϕ(k)). (15)

Solving the differential equation in (15) yields the equation for the char-
acteristic curves

x = g′(ϕ(k))t+ k, (16)

where the parameter k corresponds to the value on the x–axis on which
the characteristic curves meet the x–axis.

Next, solve for k in (16) and substitute into (14) to obtain the expression

u(x, t) = ϕ(x− g′(u(x, t))t), (17)

which gives a solution of the partial differential equation in (10) implicitly.
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Using the initial condition in (10), we obtain from (17) that

ϕ(x) = f(x), for all x ∈ R,

so that (17) can now be re–written as

u(x, t) = f(x− g′(u(x, t))t). (18)

Accordingly, the equation for the characteristic curves in (16) can now be
re–written as

x = g′(f(k))t+ k, (19)

so that the characteristic curves will be straight lines in the xt–plane of
slope 1/g′(f(k)) going through (k, 0) for k ∈ R, where g′(u) is obtained
from (11) as

g′(u) = 1− 2u. (20)

For instance, using (20), (12) and (19) we get that the equations for the
characteristic curves for k 6 −1 are given by

x = −t+ k, for k 6 −1. (21)

The curves described by (21) are straight lines with slope −1 going through
(k, 0), for k 6 −1. Some of these are pictured in Figure 2. Similarly, for

x

t

@
@

@
@

@
@
@@

@
@

@
@

@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@

@
@
@

@
@
@@

@
@

@
@
@

@
@
@

@
@

@@

A
A
A
A
A
A
A
A
A
A
A
A
A

�
�
�
�
�
�
�
�
�
�
�
�
�

S
S
S
S
S
S
S
S
S
S
SS

C
C
C
C
C
C
C
C
C
C
C
C
C

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
��

�
�
�
�
�
�
��

�
�
�
�
�
�
��

�
�
�
�
�
�
��

Figure 2: Characteristic Curves for Problem (10)

k > 1, the curves in (19) have equations

x = t+ k, for k > 1,
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which are straight lines of slope 1 going through (k, 0), for k > 1; some of
these lines are also sketched in Figure 2.

For values of k between −1 and 1, the slopes of the lines in (19) are
given by 1/g′(f(k)), where f(k) ranges from 1 at k = −1, to 0 at k = 1;
so, according to (20), the slopes of the lines are negative and increase in
absolute value to ∞ as k approaches 0. At k = 0, f(k) = 1/2, so that
g′(f(k)) = 0, by virtue of (20), so that the characteristic curve will be
x = 0, according to (19), or the t–axis. As k ranges from 0 to 1, the
characteristic curves fan out from the t–axis to the line x = t + 1. A few
of these curves are shown in Figure 2. �

(b) Explain how the initial value problem can be solved in this case, and give
a formula for u(x, t).

Solution: Since the characteristic curves do not intersect for t > 0, the
initial value problem in (10) can always be solved by traveling back along
the characteristic curves until they hit the x–axis at a point (k, 0), and
then reading the value of the initial density, u(k, 0) = f(k), at that point.
For example, if the point (x, t) lies in the region x < −t − 1, we see from
Figure 2 that the characteristic curve containing the point (x, t) will meet
the x–axis at some point (k, 0) with k < −1; since, f(k) = 1 for k < −1,
it follows from (18) that

u(x, t) = 1, for x < −t− 1, and t > 0. (22)

Similarly, if x > x + t, then the characteristic curve containing (x, t) will
meet the x–axis at some point (k, 0) with k > 1; since f(k) = 0 for k > 1,
it follows from (18) that

u(x, t) = 0, for x > t+ 1, and t > 0. (23)

For (x, t) lying in the region between the lines x = −t−1 and x = t+1, the
characteristic curve containing the point will meet the x–axis at a point

(k, 0) with −1 6 k 6 1. Since f(k) =
1

2
(1 − k) for those values of k, by

(12), it follows from (18) that

u(x, t) =
1

2
[1− (x− g′(u(x, t))t)], for − t− 1 6 x 6 t+ 1. (24)

Using (20), we can re–write (24) as

u(x, t) =
1− x+ t

2
− u(x, t)t, for − t− 1 6 x 6 t+ 1. (25)
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Solving for u(x, t) in (25) yields

u(x, t) =
1− x+ t

2(1 + t)
, for − t− 1 6 x 6 t+ 1. (26)

Finally, putting together the results in (22), (23) and (26), we obtain the
following formula for u(x, t):

u(x, t) =


1, for x < −t− 1;
1− x+ t

2(1 + t)
, for − t− 1 6 x 6 t+ 1;

0, for x > t+ 1,

for t > 0. �

3. Traffic Flow at a Red light. Let the initial condition in Problem 3 be given
by

f(x) =

{
1, if x 6 0;

0, if x > 0.
(27)

(a) Explain why this initial value problem models the situation at a traffic
light before the light turns green.

Solution: A car density of u = 1 corresponds to a maximum density,
ρmax, of bumper–to–bumper traffic, and zero speed. Thus, for x 6 0 and
t = 0, all drivers have stopped their vehicles and are waiting for the line to
turn green in order to start moving. On the other side of the intersection,
for x > 0, there are no vehicles; the car density is 0. �

(b) Sketch the characteristic curves of the partial differential equation.

Solution: The equation for the characteristic curves of the PDE in (10)
is

dx

dt
= g′(u), (28)

where
g′(u) = 1− 2u. (29)

On characteristic curves, a solution u of the PDE in (10) satisfies the ODE

du

dt
= 0, (30)
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which we can solve to get
u = ϕ(k), (31)

where ϕ is a differentiable function of a single variable, and k is a real value
indexing the characteristic curve on which the ODE in (30) holds true.

Next, substitute the expression for in (31) into (28) to get the ODE

dx

dt
= g′(ϕ(k)),

which can be solved to yield

x = g′(ϕ(k))t+ k (32)

as the equation for the characteristic curves.

Now, solving for the left–most k in (32) and substituting into (31) yields
an implicit formula for u(x, t),

u(x, t) = ϕ(x− g′(u(x, t))t), (33)

where we have also used (31).

Using the initial condition in (10), we obtain from (33) that

ϕ(x) = f(x), for all x ∈ R.

We can therefore write the equation for the characteristic curves in (32) as

x = g′(f(k))t+ k, for k ∈ R. (34)

We next proceed to sketch the characteristic curves in (34).

For k 6 0, we have that f(k) = 1; so that, according to (29), g′(f(k)) = −1
and, therefore, the characteristic curves for k 6 0 are

x = −t+ k, for k 6 0,

where we have used (34). These are sketched in Figure 3.

Similarly, for k > 0 we have that f(k) = 0 and, therefore, g′(f(k)) = 1; so
that the characteristic curves for k > 0 are

x = t+ k.

These are also sketched in Figure 3. �
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Figure 3: Characteristic Curves in (34)

(c) Explain why a shock wave solution doe not develop at t = 0.

Solution: The sketch in Figure 3 shows that the characteristic curves of
the PDE in (10) with the initial condition in (27) do not intersect for t > 0.
Hence, no shock wave solution develops at t = 0. �

(d) Look for a solution to the equation of the form

u(x, t) = ϕ
(x
t

)
, for − t < x < t, and t > 0,

where ϕ is a differentiable function of a single variable.

Suggestion: Introduce a new variable η =
x

t
, and compute

dϕ

dη
.

Solution: The sketch of the characteristic curves in Figure 3 shows that
a solution of the IVP in (10) with the initial condition in (27) can be
obtained for x < −t or x > t, and t > 0, by travelling back along the
characteristic curves to the x–axis. In fact, u(x, t) = 1 for x 6 −t and
u(x, t) = 0 for x > t. It remains therefore to find a formula for u(x, t) for
−t < x 6 t and t > 0. To do so, we look for a solution of the form

u(x, t) = ϕ
(x
t

)
, for t > 0, (35)

where ϕ is a differentiable function of a single variable.

In order for the function u, given in (35), to be a solution of the equation
in (10) it must satisfy the partial differential equation

∂u

∂t
+ (1− 2u)

∂u

∂x
= 0, for t > 0. (36)
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Thus, we need to compute the partial derivatives of u in terms of ϕ and
substitute them in the equation in (36). In order to do this, we introduce
the variable

η =
x

t
; (37)

so that, according to (35),

u(x, t) = ϕ(η); (38)

so that, applying the Chain Rule,

∂u

∂t
= ϕ′(η) · ∂η

∂t
= ϕ′(η)

(
− x
t2

)
,

or
∂u

∂t
= −1

t
ηϕ′(η), for t > 0. (39)

Similarly, differentiating with respect to x,

∂u

∂t
= ϕ′(η) · ∂η

∂x
= ϕ′(η)

(
1

t

)
,

or
∂u

∂x
=

1

t
ϕ′(η), for t > 0. (40)

Now, substituting (40), (39) and (38) into (36) yields

−1

t
ηϕ′(η) + (1− 2ϕ(η))

1

t
ϕ′(η) = 0,

which simplifies to

(1− η − 2ϕ(η))ϕ′(η) = 0, for t > 0. (41)

Now, it follows from (41) that, either

ϕ′(η) = 0, (42)

or

ϕ(η) =
1− η

2
. (43)

If (42) holds true for all η, then ϕ would have to be constant. This would
say, in view of (38), that u(x, t) would have to be constant. However, this
conclusion would not agree with the fact that u(x, t) is 1 on the region in
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the xt–plane corresponding to characteristic curves emanating from (k, 0)
with k < 0, and u(x, t) is 0 in the region corresponding to characteristic
curves emanating from (k, 0) for k > 0 (see Figure 3). Hence, it must be
the case that ϕ is as given in (43). We therefore have, according to that
(38) and (37) that

u(x, t) =
1− x

t
2

, for − t < x 6 t, and t > 0,

or

u(x, t) =
t− x

2t
, for − t < x 6 t, and t > 0.

Combing this result with the information obtained from the characteristic
sketched in Figure 3 we get that

u(x, t) =



1, if x 6 −t;

t− x
2t

, if − t < x 6 t;

0, if x > t,

for t > 0. �


