Solutions to Review Problems for Exam \#1

1. Modeling the Spread of a Disease. In a simple model for a disease that is spread through infections transmitted between individuals in a population, the population is divided into three compartments pictured in Figure 1. The

Figure 1: SIR Compartments
first compartment, $S(t)$, denotes the set of individuals in a population that are susceptible to acquiring the disease; the second compartment, $I(t)$, denotes the set of infected individual who can also infect others; and the third compartment, $R(t)$, denotes the set of individuals who had the disease and who have recovered from it; they can no longer get infected.
Assume that the total number of individuals in the population,

$$
N=S(t)+I(t)+R(t)
$$

is constant. Susceptible individuals can get infected by contact with infectious individuals and move to the infected class. This is indicated by the arrow going from the $S(t)$ compartment to the $I(t)$ compartment.

The rate at which susceptible individuals get infected is proportional to product of number of susceptible individuals and the number of infected individuals with constant of proportionality $\beta>0$. The rate at which infected individuals recover is proportional to the number of infected individuals with constant of proportionality $\gamma>0$. What are the units for β and γ ?
Use conservation principles to derive a system of differential equations for the functions S, I and R, assuming that they are differentiable. Models of this type were first studied by Kermack and McKendrick in the early 1930s.
Introduce dimensionless variables

$$
\begin{equation*}
\widehat{s}(t)=\frac{S(t)}{N}, \quad \widehat{i}(t)=\frac{I(t)}{N}, \quad \widehat{r}(t)=\frac{R(t)}{N}, \quad \text { and } \quad \widehat{t}=\frac{t}{\tau} \tag{1}
\end{equation*}
$$

for some scaling factor, τ, in units of time, in order to write the system in dimensionless form.
Solution: Using conservation principles on each of the compartments, we obtain the system of ordinary differential equations

$$
\left\{\begin{align*}
\frac{d S}{d t} & =-\beta S I \tag{2}\\
\frac{d I}{d t} & =\beta S I-\gamma I \\
\frac{d R}{d t} & =\gamma I
\end{align*}\right.
$$

It follows from the equations in (2) that β has units of $1 /[$ time \times individual], while γ has units of $1 /$ time.
Next, use the change of variables in (1) and the Chain Rule to obtain from the first equation in (2) that

$$
\begin{aligned}
\frac{d \widehat{s}}{d \widehat{t}} & =\frac{d \widehat{s}}{d t} \cdot \frac{d t}{d \widehat{t}} \\
& =\frac{\tau}{N} \frac{d S}{d t} \\
& =-\frac{\tau}{N} \beta S I
\end{aligned}
$$

so that, using (1) again,

$$
\begin{equation*}
\frac{d \widehat{s}}{d \widehat{t}}=-\beta \tau N \widehat{s} \widehat{i} \tag{3}
\end{equation*}
$$

Similar calculations for the second equation in (2) yield

$$
\begin{equation*}
\frac{\widehat{d i}}{\widehat{d t}}=\beta \tau N \widehat{s} \widehat{i}-\gamma \tau \widehat{i} \tag{4}
\end{equation*}
$$

and, for the third equation in (4),

$$
\begin{equation*}
\frac{d \widehat{r}}{d \widehat{t}}=\gamma \tau \widehat{i} \tag{5}
\end{equation*}
$$

Define the dimensionless parameter

$$
\begin{equation*}
\beta \tau N=R_{o}, \tag{6}
\end{equation*}
$$

and set

$$
\gamma \tau=1
$$

so tat

$$
\begin{equation*}
\tau=\frac{1}{\gamma} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{o}=\frac{\beta N}{\gamma} \tag{8}
\end{equation*}
$$

by virtue of (6).
Next, substitute (6) and (7) into the equations in (3), (4) and (5) to obtain the dimensionless system

$$
\left\{\begin{align*}
\frac{d \widehat{s}}{d \widehat{t}} & =-R_{o} \widehat{s} \widehat{i} \tag{9}\\
\frac{\widehat{d}}{d \widehat{t}} & =R_{o} \widehat{s} \widehat{i}-\widehat{i} \\
\frac{d \widehat{r}}{d \widehat{t}} & =\widehat{i}
\end{align*}\right.
$$

If we stipulate from the outset that t is measured in units of $1 / \gamma$ and s, i and r are measures in fractions of the total population, N, then the system in (9) can be written in simpler form as

$$
\left\{\begin{aligned}
\frac{d s}{d t} & =-R_{o} s i \\
\frac{d i}{d t} & =R_{o} s i-i \\
\frac{d r}{d t} & =i
\end{aligned}\right.
$$

which depends on the single dimensionless parameter, R_{o}, given in (8).
2. Modeling Traffic Flow. Consider the initial value problem

$$
\left\{\begin{align*}
\frac{\partial u}{\partial t}+g^{\prime}(u) \frac{\partial u}{\partial x} & =0 \tag{10}\\
u(x, 0) & =f(x)
\end{align*}\right.
$$

where

$$
\begin{equation*}
g(u)=u(1-u) \tag{11}
\end{equation*}
$$

and the initial condition f is given by

$$
f(x)=\left\{\begin{array}{cl}
1, & \text { if } x<-1 \tag{12}\\
\frac{1}{2}(1-x), & \text { if }-1 \leqslant x<1 \\
0, & \text { if } x \geqslant 1
\end{array}\right.
$$

(a) Sketch the characteristic curves of the partial differential equation.

Solution: The equation for the characteristic curves is given by

$$
\begin{equation*}
\frac{d x}{d t}=g^{\prime}(u) \tag{13}
\end{equation*}
$$

On characteristic curves, a solution, u, to the partial differential equation in (10) satisfies the ordinary differential equation

$$
\frac{d u}{d t}=0
$$

which shows that u is constant along characteristic curves. We write

$$
\begin{equation*}
u(x, t)=\varphi(k) \tag{14}
\end{equation*}
$$

where $\varphi(k)$ is the constant value of u on the characteristic indexed by k. Using the value for u in (14), the equation for the characteristic curves in (13) can be re-written as

$$
\begin{equation*}
\frac{d x}{d t}=g^{\prime}(\varphi(k)) \tag{15}
\end{equation*}
$$

Solving the differential equation in (15) yields the equation for the characteristic curves

$$
\begin{equation*}
x=g^{\prime}(\varphi(k)) t+k, \tag{16}
\end{equation*}
$$

where the parameter k corresponds to the value on the x-axis on which the characteristic curves meet the x-axis.
Next, solve for k in (16) and substitute into (14) to obtain the expression

$$
\begin{equation*}
u(x, t)=\varphi\left(x-g^{\prime}(u(x, t)) t\right) \tag{17}
\end{equation*}
$$

which gives a solution of the partial differential equation in (10) implicitly.

Using the initial condition in (10), we obtain from (17) that

$$
\varphi(x)=f(x), \quad \text { for all } x \in \mathbb{R}
$$

so that (17) can now be re-written as

$$
\begin{equation*}
u(x, t)=f\left(x-g^{\prime}(u(x, t)) t\right) \tag{18}
\end{equation*}
$$

Accordingly, the equation for the characteristic curves in (16) can now be re-written as

$$
\begin{equation*}
x=g^{\prime}(f(k)) t+k, \tag{19}
\end{equation*}
$$

so that the characteristic curves will be straight lines in the $x t$-plane of slope $1 / g^{\prime}(f(k))$ going through $(k, 0)$ for $k \in \mathbb{R}$, where $g^{\prime}(u)$ is obtained from (11) as

$$
\begin{equation*}
g^{\prime}(u)=1-2 u . \tag{20}
\end{equation*}
$$

For instance, using (20), (12) and (19) we get that the equations for the characteristic curves for $k \leqslant-1$ are given by

$$
\begin{equation*}
x=-t+k, \quad \text { for } k \leqslant-1 \tag{21}
\end{equation*}
$$

The curves described by (21) are straight lines with slope -1 going through $(k, 0)$, for $k \leqslant-1$. Some of these are pictured in Figure 2. Similarly, for

Figure 2: Characteristic Curves for Problem (10)
$k \geqslant 1$, the curves in (19) have equations

$$
x=t+k, \quad \text { for } k \geqslant 1,
$$

which are straight lines of slope 1 going through $(k, 0)$, for $k \geqslant 1$; some of these lines are also sketched in Figure 2.
For values of k between -1 and 1 , the slopes of the lines in (19) are given by $1 / g^{\prime}(f(k))$, where $f(k)$ ranges from 1 at $k=-1$, to 0 at $k=1$; so, according to (20), the slopes of the lines are negative and increase in absolute value to ∞ as k approaches 0 . At $k=0, f(k)=1 / 2$, so that $g^{\prime}(f(k))=0$, by virtue of (20), so that the characteristic curve will be $x=0$, according to (19), or the t-axis. As k ranges from 0 to 1 , the characteristic curves fan out from the t-axis to the line $x=t+1$. A few of these curves are shown in Figure 2.
(b) Explain how the initial value problem can be solved in this case, and give a formula for $u(x, t)$.
Solution: Since the characteristic curves do not intersect for $t>0$, the initial value problem in (10) can always be solved by traveling back along the characteristic curves until they hit the x-axis at a point $(k, 0)$, and then reading the value of the initial density, $u(k, 0)=f(k)$, at that point. For example, if the point (x, t) lies in the region $x<-t-1$, we see from Figure 2 that the characteristic curve containing the point (x, t) will meet the x-axis at some point $(k, 0)$ with $k<-1$; since, $f(k)=1$ for $k<-1$, it follows from (18) that

$$
\begin{equation*}
u(x, t)=1, \quad \text { for } x<-t-1, \text { and } t \geqslant 0 \tag{22}
\end{equation*}
$$

Similarly, if $x \geqslant x+t$, then the characteristic curve containing (x, t) will meet the x-axis at some point $(k, 0)$ with $k \geqslant 1$; since $f(k)=0$ for $k \geqslant 1$, it follows from (18) that

$$
\begin{equation*}
u(x, t)=0, \quad \text { for } x \geqslant t+1, \text { and } t \geqslant 0 \tag{23}
\end{equation*}
$$

For (x, t) lying in the region between the lines $x=-t-1$ and $x=t+1$, the characteristic curve containing the point will meet the x-axis at a point $(k, 0)$ with $-1 \leqslant k \leqslant 1$. Since $f(k)=\frac{1}{2}(1-k)$ for those values of k, by (12), it follows from (18) that

$$
\begin{equation*}
u(x, t)=\frac{1}{2}\left[1-\left(x-g^{\prime}(u(x, t)) t\right)\right], \quad \text { for }-t-1 \leqslant x \leqslant t+1 \tag{24}
\end{equation*}
$$

Using (20), we can re-write (24) as

$$
\begin{equation*}
u(x, t)=\frac{1-x+t}{2}-u(x, t) t, \quad \text { for }-t-1 \leqslant x \leqslant t+1 \tag{25}
\end{equation*}
$$

Solving for $u(x, t)$ in (25) yields

$$
\begin{equation*}
u(x, t)=\frac{1-x+t}{2(1+t)}, \quad \text { for }-t-1 \leqslant x \leqslant t+1 \tag{26}
\end{equation*}
$$

Finally, putting together the results in (22), (23) and (26), we obtain the following formula for $u(x, t)$:

$$
u(x, t)= \begin{cases}1, & \text { for } x<-t-1 \\ \frac{1-x+t}{2(1+t)}, & \text { for }-t-1 \leqslant x \leqslant t+1 \\ 0, & \text { for } x>t+1\end{cases}
$$

for $t \geqslant 0$.
3. Traffic Flow at a Red light. Let the initial condition in Problem 3 be given by

$$
f(x)= \begin{cases}1, & \text { if } x \leqslant 0 \tag{27}\\ 0, & \text { if } x>0\end{cases}
$$

(a) Explain why this initial value problem models the situation at a traffic light before the light turns green.
Solution: A car density of $u=1$ corresponds to a maximum density, $\rho_{\text {max }}$, of bumper-to-bumper traffic, and zero speed. Thus, for $x \leqslant 0$ and $t=0$, all drivers have stopped their vehicles and are waiting for the line to turn green in order to start moving. On the other side of the intersection, for $x>0$, there are no vehicles; the car density is 0 .
(b) Sketch the characteristic curves of the partial differential equation.

Solution: The equation for the characteristic curves of the PDE in (10) is

$$
\begin{equation*}
\frac{d x}{d t}=g^{\prime}(u) \tag{28}
\end{equation*}
$$

where

$$
\begin{equation*}
g^{\prime}(u)=1-2 u \tag{29}
\end{equation*}
$$

On characteristic curves, a solution u of the PDE in (10) satisfies the ODE

$$
\begin{equation*}
\frac{d u}{d t}=0 \tag{30}
\end{equation*}
$$

which we can solve to get

$$
\begin{equation*}
u=\varphi(k) \tag{31}
\end{equation*}
$$

where φ is a differentiable function of a single variable, and k is a real value indexing the characteristic curve on which the ODE in (30) holds true. Next, substitute the expression for in (31) into (28) to get the ODE

$$
\frac{d x}{d t}=g^{\prime}(\varphi(k))
$$

which can be solved to yield

$$
\begin{equation*}
x=g^{\prime}(\varphi(k)) t+k \tag{32}
\end{equation*}
$$

as the equation for the characteristic curves.
Now, solving for the left-most k in (32) and substituting into (31) yields an implicit formula for $u(x, t)$,

$$
\begin{equation*}
u(x, t)=\varphi\left(x-g^{\prime}(u(x, t)) t\right) \tag{33}
\end{equation*}
$$

where we have also used (31).
Using the initial condition in (10), we obtain from (33) that

$$
\varphi(x)=f(x), \quad \text { for all } x \in \mathbb{R}
$$

We can therefore write the equation for the characteristic curves in (32) as

$$
\begin{equation*}
x=g^{\prime}(f(k)) t+k, \quad \text { for } k \in \mathbb{R} . \tag{34}
\end{equation*}
$$

We next proceed to sketch the characteristic curves in (34).
For $k \leqslant 0$, we have that $f(k)=1$; so that, according to (29), $g^{\prime}(f(k))=-1$ and, therefore, the characteristic curves for $k \leqslant 0$ are

$$
x=-t+k, \quad \text { for } k \leqslant 0,
$$

where we have used (34). These are sketched in Figure 3.
Similarly, for $k>0$ we have that $f(k)=0$ and, therefore, $g^{\prime}(f(k))=1$; so that the characteristic curves for $k>0$ are

$$
x=t+k .
$$

These are also sketched in Figure 3.

Figure 3: Characteristic Curves in (34)
(c) Explain why a shock wave solution doe not develop at $t=0$.

Solution: The sketch in Figure 3 shows that the characteristic curves of the PDE in (10) with the initial condition in (27) do not intersect for $t>0$. Hence, no shock wave solution develops at $t=0$.
(d) Look for a solution to the equation of the form

$$
u(x, t)=\varphi\left(\frac{x}{t}\right), \quad \text { for }-t<x<t, \quad \text { and } \quad t>0
$$

where φ is a differentiable function of a single variable.
Suggestion: Introduce a new variable $\eta=\frac{x}{t}$, and compute $\frac{d \varphi}{d \eta}$.
Solution: The sketch of the characteristic curves in Figure 3 shows that a solution of the IVP in (10) with the initial condition in (27) can be obtained for $x<-t$ or $x>t$, and $t>0$, by travelling back along the characteristic curves to the x-axis. In fact, $u(x, t)=1$ for $x \leqslant-t$ and $u(x, t)=0$ for $x>t$. It remains therefore to find a formula for $u(x, t)$ for $-t<x \leqslant t$ and $t>0$. To do so, we look for a solution of the form

$$
\begin{equation*}
u(x, t)=\varphi\left(\frac{x}{t}\right), \quad \text { for } t>0 \tag{35}
\end{equation*}
$$

where φ is a differentiable function of a single variable.
In order for the function u, given in (35), to be a solution of the equation in (10) it must satisfy the partial differential equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}+(1-2 u) \frac{\partial u}{\partial x}=0, \quad \text { for } t>0 \tag{36}
\end{equation*}
$$

Thus, we need to compute the partial derivatives of u in terms of φ and substitute them in the equation in (36). In order to do this, we introduce the variable

$$
\begin{equation*}
\eta=\frac{x}{t} \tag{37}
\end{equation*}
$$

so that, according to (35),

$$
\begin{equation*}
u(x, t)=\varphi(\eta) \tag{38}
\end{equation*}
$$

so that, applying the Chain Rule,

$$
\frac{\partial u}{\partial t}=\varphi^{\prime}(\eta) \cdot \frac{\partial \eta}{\partial t}=\varphi^{\prime}(\eta)\left(-\frac{x}{t^{2}}\right)
$$

or

$$
\begin{equation*}
\frac{\partial u}{\partial t}=-\frac{1}{t} \eta \varphi^{\prime}(\eta), \quad \text { for } t>0 \tag{39}
\end{equation*}
$$

Similarly, differentiating with respect to x,

$$
\frac{\partial u}{\partial t}=\varphi^{\prime}(\eta) \cdot \frac{\partial \eta}{\partial x}=\varphi^{\prime}(\eta)\left(\frac{1}{t}\right)
$$

or

$$
\begin{equation*}
\frac{\partial u}{\partial x}=\frac{1}{t} \varphi^{\prime}(\eta), \quad \text { for } t>0 \tag{40}
\end{equation*}
$$

Now, substituting (40), (39) and (38) into (36) yields

$$
-\frac{1}{t} \eta \varphi^{\prime}(\eta)+(1-2 \varphi(\eta)) \frac{1}{t} \varphi^{\prime}(\eta)=0
$$

which simplifies to

$$
\begin{equation*}
(1-\eta-2 \varphi(\eta)) \varphi^{\prime}(\eta)=0, \quad \text { for } t>0 \tag{41}
\end{equation*}
$$

Now, it follows from (41) that, either

$$
\begin{equation*}
\varphi^{\prime}(\eta)=0 \tag{42}
\end{equation*}
$$

or

$$
\begin{equation*}
\varphi(\eta)=\frac{1-\eta}{2} \tag{43}
\end{equation*}
$$

If (42) holds true for all η, then φ would have to be constant. This would say, in view of (38), that $u(x, t)$ would have to be constant. However, this conclusion would not agree with the fact that $u(x, t)$ is 1 on the region in
the $x t$-plane corresponding to characteristic curves emanating from $(k, 0)$ with $k<0$, and $u(x, t)$ is 0 in the region corresponding to characteristic curves emanating from $(k, 0)$ for $k>0$ (see Figure 3). Hence, it must be the case that φ is as given in (43). We therefore have, according to that (38) and (37) that

$$
u(x, t)=\frac{1-\frac{x}{t}}{2}, \quad \text { for }-t<x \leqslant t, \quad \text { and } \quad t>0
$$

or

$$
u(x, t)=\frac{t-x}{2 t}, \quad \text { for }-t<x \leqslant t, \quad \text { and } \quad t>0
$$

Combing this result with the information obtained from the characteristic sketched in Figure 3 we get that

$$
u(x, t)= \begin{cases}1, & \text { if } x \leqslant-t \\ \frac{t-x}{2 t}, & \text { if }-t<x \leqslant t \\ 0, & \text { if } x>t\end{cases}
$$

for $t>0$.

