Review Problems for Exam 2

1. The Poisson Random Process Revisited. We saw in class and in the lecture notes online how to define a Poisson random process, $\{M(t) \mid t \geqslant 0\}$, to model occurrences of events at random points in time (e.g., occurrences of mutations in a bacterial colony). Here $M(t)$ counts the number of occurrences in the time interval $[0, t]$. This continuous-time random process may also be defined as one satisfying the following axioms:
(i) $M(0)=0$.
(ii) The number of events that occur in disjoint time intervals are independent; in symbols, for $t_{1}<t_{2}<t_{3}<t_{4}$,

$$
M\left(t_{2}\right)-M\left(t_{1}\right) \text { and } M\left(t_{4}\right)-M\left(t_{3}\right) \text { are independent random variables. }
$$

(iii) The number of occurrences within a time interval depends only on the length of the time interval; in symbols, for all $t, s>0, M(t+s)-M(t)$ depends only on s, so that

$$
\operatorname{Pr}[M(t+s)-M(t)=k]=\operatorname{Pr}[M(s)-M(0)=k], \quad \text { for all } k .
$$

(iv) $\operatorname{Pr}[M(\Delta t)=1]=\lambda \Delta t+o(\Delta t)$.
(v) $\operatorname{Pr}[M(\Delta t) \geqslant 2]=o(\Delta t)$.

The notation $o(h)$ in (iv) and (v) is defined as follows: We say that an expression, $f(h)$, is $o(h)$ as $h \rightarrow 0$ iff $\lim _{h \rightarrow 0} \frac{f(h)}{h}=0$.

The constant λ in (iv) is called the rate of the process.
Set

$$
P_{m}(t)=\operatorname{Pr}[M(t)=m], \quad \text { for } m=0,1,2,3 \ldots, \text { and } t \geqslant 0 .
$$

Use the axioms (i)-(v) to prove the following assertions.
(a) For $t, s>0$,

$$
\begin{equation*}
P_{0}(t+s)=P_{0}(t) \cdot P_{0}(s) \tag{1}
\end{equation*}
$$

Suggestion: Consider the event $[M(t)=0, M(t+s)-M(t)=0]$ or

$$
[M(t)=0] \cap[M(t+s)-M(t)=0] .
$$

(b) Use (1) and axioms (iv) and (v) to derive the differential equation

$$
\begin{equation*}
\frac{d P_{0}}{d t}=-\lambda P_{0}(t) \tag{2}
\end{equation*}
$$

Suggestion: Verify that

$$
P_{0}(t+\Delta t)-P_{0}(t)=-\lambda P_{0}(t) \Delta t+o(\Delta t)
$$

(c) Solve the differential equation in (2) subject to the initial condition in (i) to obtain and expression for $P_{0}(t)$ for all $t \geqslant 0$.
(d) Let T_{1} denote the time of the first occurrence, and, for $n \geqslant 2$, let T_{n} denote the time elapsed between the $(n-1)^{\text {st }}$ occurrence and the the $n^{\text {th }}$ occurrence. The sequence $\left(T_{n}\right)$ is called the sequence of interarrival times. Give the distribution for each of the random variables T_{n}.
Suggestion: We have already done the derivation of the distribution for T_{1} in the class notes and assignments. Please, present the derivation here as well.
For $n=2$, consider the conditional probabilities

$$
\operatorname{Pr}\left[T_{2}>s+t \mid T_{1}=s\right] \text { and } \operatorname{Pr}[M(s+t)-M(s)=0 \mid M(s)=1] .
$$

(e) Let S_{n} denote the time of occurrence of the $n^{\text {th }}$ event, so that

$$
S_{n}=\sum_{k=1}^{n} T_{k}, \quad \text { for } n=1,2,3, \ldots
$$

Show that, for each $n=1,2,3, \ldots, S_{n}$ is a continuous random variable with density function given by

$$
\begin{equation*}
f_{S_{n}}(s)=\lambda e^{-\lambda s} \frac{(\lambda s)^{n-1}}{(n-1)!}, \quad \text { for } n=1,2,3, \ldots \tag{3}
\end{equation*}
$$

Suggestion: Proceed by induction on n. The base case, $n=1$, has already been established. For the case $n=2$, so that $S_{2}=T_{1}+T_{2}$, use the fact that, since T_{1} and T_{2} are independent random variables, the distribution of S_{2} is given by the convolution formula

$$
\begin{equation*}
f_{S_{n}}(s)=f_{T_{1}} * f_{T_{2}}(s)=\int_{-\infty}^{\infty} f_{T_{1}}(\tau) f_{T_{2}}(s-\tau) d \tau \tag{4}
\end{equation*}
$$

Note that the convolution formula in (4) applies to any sum of independent, continuous random variables.
(f) Use the result in (3) to derive the formula

$$
P_{m}(t)=\frac{(\lambda t)^{m}}{m!} e^{-\lambda t}, \quad \text { for } m=0,1,2,3, \ldots, \text { and } t \geqslant 0
$$

Suggestion: Consider the events

$$
[M(t) \geqslant n] \quad \text { and } \quad\left[S_{n} \leqslant t\right]
$$

and note that

$$
[M(t)=n]=[n \leqslant M(t)<n+1]
$$

(g) Suppose that exactly one event has occurred in the time interval $[0, \tau]$. We consider the time of occurrence, T_{1}, of that event. Compute the conditional probability

$$
\operatorname{Pr}\left[T_{1} \leqslant t \mid M(\tau)=1\right], \text { for } 0<t<\tau
$$

Suggestion: Consider the events

$$
\left[T_{1} \leqslant t, M(\tau)=1\right] \quad \text { and } \quad[M(t)=1, M(\tau)-M(t)=0]
$$

for $0<t<\tau$.
2. The Error function, Erf: $\mathbb{R} \rightarrow \mathbb{R}$, is defined by

$$
\begin{equation*}
\operatorname{Erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-s^{2}} d s, \quad \text { for } x \in \mathbb{R} \tag{5}
\end{equation*}
$$

Use the fact that

$$
\int_{0}^{\infty} e^{-s^{2}} d s=\frac{\sqrt{\pi}}{2}
$$

to deduce that
(a) $\lim _{x \rightarrow \infty} \operatorname{Erf}(x)=1$; and
(b) $\lim _{x \rightarrow-\infty} \operatorname{Erf}(x)=-1$.
3. Solving the Heat Equation. In this problem we compute a solution of the initial value problem

$$
\left\{\begin{align*}
\frac{\partial u}{\partial t} & =D \frac{\partial^{2} u}{\partial x^{2}}, & & x \in \mathbb{R}, t>0 \tag{6}\\
u(x, 0) & =f(x), & & x \in \mathbb{R}
\end{align*}\right.
$$

where

$$
f(x)= \begin{cases}1, & \text { if } x \leqslant 0 \tag{7}\\ 0, & \text { if } x>0\end{cases}
$$

(a) Use the heat kernel to give a solution of the IVP (6).
(b) Use a mathematical software package to sketch the graph of $x \mapsto u(x, t)$ for several values of $t>0$, where $u(x, t)$ is the solution of the initial value problem (6) with initial condition in (7) obtained in part (a).
(c) Let $u(x, t)$ be the solution to the initial value problem (6) with initial condition in (7) obtained in part (a). Compute the following
(i) $\lim _{t \rightarrow 0^{+}} u(x, t)$, for $x=0$ and for $x \neq 0$.
(ii) $\lim _{x \rightarrow 0} u(x, t)$, for all $t>0$.
(d) Let $u(x, t)$ be the solution of the initial value problem (6) with initial condition in (7) obtained in part (a). Compute the following
(i) $\lim _{t \rightarrow \infty} u(x, t)$, for $x=0$ and for $x \neq 0$.
(ii) $\lim _{x \rightarrow \infty} u(x, t)$, for all $t>0$.
(iii) $\lim _{x \rightarrow-\infty} u(x, t)$, for all $t>0$.

