Solutions to Review Problems for Exam \#2

1. The Poisson Random Process Revisited. We saw in class and in the lecture notes online how to define a Poisson random process, $\{M(t) \mid t \geqslant 0\}$, to model occurrences of events at random points in time (e.g., occurrences of mutations in a bacterial colony). Here $M(t)$ counts the number of occurrences in the time interval $[0, t]$. This continuous-time random process may also be defined as one satisfying the following axioms:
(i) $M(0)=0$.
(ii) The number of events that occur in disjoint time intervals are independent; in symbols, for $t_{1}<t_{2} \leqslant t_{3}<t_{4}$,

$$
M\left(t_{2}\right)-M\left(t_{1}\right) \text { and } M\left(t_{4}\right)-M\left(t_{3}\right) \text { are independent random variables. }
$$

(iii) The number of occurrences within a time interval depends only on the length of the time interval; in symbols, for all $t, s>0, M(t+s)-M(t)$ depends only on s, so that

$$
\operatorname{Pr}[M(t+s)-M(t)=k]=\operatorname{Pr}[M(s)-M(0)=k], \quad \text { for all } k .
$$

(iv) $\operatorname{Pr}[M(\Delta t)=1]=\lambda \Delta t+o(\Delta t)$.
(v) $\operatorname{Pr}[M(\Delta t) \geqslant 2]=o(\Delta t)$.

The notation $o(h)$ in (iv) and (v) is defined as follows: We say that an expression, $f(h)$, is $o(h)$ as $h \rightarrow 0$ iff $\lim _{h \rightarrow 0} \frac{f(h)}{h}=0$.

The constant λ in (iv) is called the rate of the process.
Set

$$
\begin{equation*}
P_{m}(t)=\operatorname{Pr}[M(t)=m], \quad \text { for } m=0,1,2,3 \ldots, \text { and } t \geqslant 0 . \tag{1}
\end{equation*}
$$

Use the axioms (i)-(v) to prove the following assertions.
(a) For $t, s>0$,

$$
\begin{equation*}
P_{0}(t+s)=P_{0}(t) \cdot P_{0}(s) \tag{2}
\end{equation*}
$$

Suggestion: Consider the event $[M(t)=0, M(t+s)-M(t)=0]$ or

$$
[M(t)=0] \cap[M(t+s)-M(t)=0] .
$$

Solution: It follows from axiom (ii) that the random variables

$$
M(t)-M(0) \quad \text { and } \quad M(t+s)-M(t)
$$

are independent; consequently, the events

$$
(M(t)=0) \quad \text { and } \quad(M(t+s)-M(t)=0)
$$

are independent (here we have also used axiom (i)); thus,
$\operatorname{Pr}(M(t)=0, M(t+s)-M(t)=0)=\operatorname{Pr}(M(t)=0) \cdot \operatorname{Pr}(M(t+s)-M(t)=0)$,
or

$$
\operatorname{Pr}(M(t+s)=0)=\operatorname{Pr}(M(t)=0) \cdot \operatorname{Pr}(M(t+s)-M(t)=0) .
$$

Hence, using the definition of P_{o} in (1),

$$
P_{o}(t+s)=P_{o}(t) \cdot \operatorname{Pr}(M(t+s)-M(t)=0)
$$

Thus, using axiom (iii),

$$
P_{o}(t+s)=P_{o}(t) \cdot \operatorname{Pr}(M(s)-M(0)=0)
$$

or, in view of axiom (i),

$$
P_{o}(t+s)=P_{o}(t) \cdot \operatorname{Pr}(M(s)=0),
$$

from which (2) follows by virtue of the definition of P_{o} in (1).
(b) Use (2) and axioms (iv) and (v) to derive the differential equation

$$
\begin{equation*}
\frac{d P_{0}}{d t}=-\lambda P_{0}(t) \tag{3}
\end{equation*}
$$

Suggestion: Verify that

$$
\begin{equation*}
P_{o}(t+\Delta t)-P_{0}(t)=-\lambda P_{o}(t) \Delta t+o(\Delta t) \tag{4}
\end{equation*}
$$

Solution: Substituting Δt for s in (2), we get

$$
\begin{equation*}
P_{o}(t+\Delta t)=P_{o}(t) \cdot P_{o}(\Delta t) \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
P_{o}(\Delta t) & =\operatorname{Pr}(M(\Delta t)=0) \\
& =1-\operatorname{Pr}(M(\Delta t) \geqslant 1) \\
& =1-\operatorname{Pr}(M(\Delta t)=1)-\operatorname{Pr}(M(\Delta t) \geqslant 2)
\end{aligned}
$$

so that, in view of (iv) and (v),

$$
\begin{equation*}
P_{o}(\Delta t)=1-\lambda \Delta t+o(\Delta t) . \tag{6}
\end{equation*}
$$

Consequently, substituting (6) into (5),

$$
P_{o}(t+\Delta t)=P_{o}(t)(1-\lambda \Delta t+o(\Delta t))
$$

from which we get

$$
P_{o}(t+\Delta t)=P_{o}(t)-\lambda P_{o}(t) \Delta t+o(\Delta t)
$$

which yields (4).
Next, divide both sides of (4) by $\Delta t \neq 0$ to get

$$
\begin{equation*}
\frac{P_{o}(t+\Delta t)-P_{o}(t)}{\Delta t}=-\lambda P_{o}(t)+\frac{o(\Delta t)}{\Delta t} . \tag{7}
\end{equation*}
$$

It follows from (7) and the definition of "o" that P_{o} is differentiable at every $t>0$, and its derivative is given by

$$
\frac{d P_{o}(t)}{d t}=-\lambda P_{o}(t)
$$

which is (3).
(c) Solve the differential equation in (3) subject to the initial condition in (i) to obtain and expression for $P_{0}(t)$ for all $t \geqslant 0$.
Solution: The general solution of the differential equation in (3) is

$$
\begin{equation*}
P_{o}(t)=C e^{-\lambda t}, \quad \text { for } t \geqslant 0 \tag{8}
\end{equation*}
$$

for arbitrary constant C.
Observe that

$$
P_{o}(0)=\operatorname{Pr}(M(0)=0)=1,
$$

by virtue of axiom (i). It then follows from (8) that $C=1$; consequently,

$$
\begin{equation*}
P_{o}(t)=e^{-\lambda t}, \quad \text { for } t \geqslant 0 \tag{9}
\end{equation*}
$$

(d) Let T_{1} denote the time of the first occurrence, and, for $n \geqslant 2$, let T_{n} denote the time elapsed between the $(n-1)^{\text {st }}$ occurrence and the the $n^{\text {th }}$ occurrence. The sequence $\left(T_{n}\right)$ is called the sequence of interarrival times. Give the distribution for each of the random variables T_{n}.
Suggestion: We have already done the derivation of the distribution for T_{1} in the class notes and assignments. Please, present the derivation here as well.
For $n=2$, consider the conditional probabilities

$$
\operatorname{Pr}\left[T_{2}>s+t \mid T_{1}=s\right] \text { and } \operatorname{Pr}[M(s+t)-M(s)=0 \mid M(s)=1] .
$$

Solution: We first compute the cumulative distribution function of T_{1},

$$
\begin{aligned}
F_{T_{1}}(t) & =\operatorname{Pr}\left(T_{1} \leqslant t\right), \quad \text { for } t \geqslant 0 \\
& =1-\operatorname{Pr}\left(T_{1}>t\right) \\
& =1-\operatorname{Pr}(M(t)=0),
\end{aligned}
$$

since $T_{1}>t$ implies that no event has occurred at time t. Consequently, using (9)

$$
F_{T_{1}}(t)=1-e^{-\lambda t}, \quad \text { for } t \geqslant 0
$$

Thus, the probability density function of T_{1} is given by

$$
f_{T_{1}}(t)= \begin{cases}\lambda e^{-\lambda t}, & \text { if } t>0 \tag{10}\\ 0, & \text { if } t \leqslant 0\end{cases}
$$

Hence, T_{1} has an exponential distribution with parameter $1 / \lambda$.
Next, we find the distribution of T_{2}. To do this, we first compute conditional probability

$$
\begin{equation*}
\operatorname{Pr}\left(T_{2} \leqslant s+t \mid T_{1}=s\right)=1-\operatorname{Pr}\left(T_{2}>s+t \mid T_{1}=s\right) \tag{11}
\end{equation*}
$$

since the second occurrence will happen at some time t after the first occurrence at $T_{1}=s$.
Observe that the event $\left(T_{2}>s+t \mid T_{1}=s\right)$ is the same as the event that there are no new occurrances after the first occurrence at $T_{1}=s$ in the time interval $(s, s+t)$; that is, the event $(M(s+t)-M(s)=0)$ conditioned on the event $M(s)=1$. We therefore have that

$$
\operatorname{Pr}\left(T_{2}>s+t \mid T_{1}=s\right)=\operatorname{Pr}(M(s+t)-M(s)=0 \mid M(s)=1)
$$

or

$$
\operatorname{Pr}\left(T_{2}>s+t \mid T_{1}=s\right)=\operatorname{Pr}(M(s+t)-M(s)=0 \mid M(s)-M(0)=1)
$$

by virtue of axiom (i). Thus, by axiom (ii)

$$
\operatorname{Pr}\left(T_{2}>s+t \mid T_{1}=s\right)=\operatorname{Pr}(M(s+t)-M(s)=0)
$$

and, by axiom (iii),

$$
\operatorname{Pr}\left(T_{2}>s+t \mid T_{1}=s\right)=\operatorname{Pr}(M(t)-M(0)=0)
$$

or

$$
\begin{equation*}
\operatorname{Pr}\left(T_{2}>s+t \mid T_{1}=s\right)=\operatorname{Pr}(M(t)=0) \tag{12}
\end{equation*}
$$

where we have used axiom (i) again.
Using the definition of P_{o} in (1) we obtain from (13) that

$$
\operatorname{Pr}\left(T_{2}>s+t \mid T_{1}=s\right)=P_{o}(t)
$$

so that, in view of (9),

$$
\begin{equation*}
\operatorname{Pr}\left(T_{2}>s+t \mid T_{1}=s\right)=e^{-\lambda t}, \quad \text { for } t \geqslant 0 \tag{13}
\end{equation*}
$$

Combining (11) and (13)

$$
\operatorname{Pr}\left(T_{2} \leqslant s+t \mid T_{1}=s\right)=1-e^{-\lambda t}, \quad \text { for } t \geqslant 0
$$

which shows that $T_{2} \sim \operatorname{Exponential}(1 / \lambda)$; that is, T_{2} and T_{1} have the same distribution.
A similar argument to that used for T_{2} shows that $T_{k} \sim \operatorname{Exponential}(1 / \lambda)$ for $k>2$. Consequently,

$$
T_{k} \sim \operatorname{Exponential}(1 / \lambda), \quad \text { for } k=1,2,3, \ldots
$$

(e) Let S_{n} denote the time of occurrence of the $n^{\text {th }}$ event, so that

$$
\begin{equation*}
S_{n}=\sum_{k=1}^{n} T_{k}, \quad \text { for } n=1,2,3, \ldots \tag{14}
\end{equation*}
$$

Show that, for each $n=1,2,3, \ldots, S_{n}$ is a continuous random variable with density function given by

$$
\begin{equation*}
f_{S_{n}}(s)=\lambda e^{-\lambda s} \frac{(\lambda s)^{n-1}}{(n-1)!}, \quad \text { for } n=1,2,3, \ldots \tag{15}
\end{equation*}
$$

Suggestion: Proceed by induction on n. The base case, $n=1$, has already been established. For the case $n=2$, so that $S_{2}=T_{1}+T_{2}$, use the fact that, since T_{1} and T_{2} are independent random variables, the distribution of S_{2} is given by the convolution formula

$$
\begin{equation*}
f_{S_{n}}(s)=f_{T_{1}} * f_{T_{2}}(s)=\int_{-\infty}^{\infty} f_{T_{1}}(\tau) f_{T_{2}}(s-\tau) d \tau \tag{16}
\end{equation*}
$$

Note that the convolution formula in (16) applies to any sum of independent, continuous random variables.
Solution: We first note that the random variables, T_{k}, obtained in the previous part are mutually independent. This is a consequence of axiom (ii), since the occurrence of an event after any number of events have occurred is in independent of how many events have occurred previously. First, note that $S_{1}=T_{1}$, according to (14), and T_{1} has the distribution function given in (10), which the distribution function given in (15) for the case $n=1$.
Next, we consider the case $n=2$. In this case, using (14), $S_{2}=T_{1}+T_{2}$, were T_{1} and T_{2} are independent, Exponential $(1 / \lambda)$ random variables. We can therefore use the formula in (16) to find the distribution of S_{2} :

$$
f_{S_{2}}(s)=\int_{-\infty}^{\infty} f_{T_{1}}(\tau) f_{T_{2}}(s-\tau) d \tau
$$

where the distribution functions of T_{1} and T_{2} are both given by (10); consequently,

$$
\begin{aligned}
f_{S_{2}}(s) & =\int_{0}^{s} \lambda e^{-\lambda \tau} \lambda e^{-\lambda(s-\tau)} d \tau \\
& =\lambda^{2} e^{-\lambda s} \int_{0}^{s} d \tau \\
& =\lambda^{2} e^{-\lambda s} s
\end{aligned}
$$

which we can rewrite as

$$
f_{S_{2}}(s)=\lambda e^{-\lambda s}(\lambda s), \quad \text { for } s>0
$$

which is (16) for the case $n=2$.
We now proceed by induction on n, assuming the statement is true for n, and showing that it must be true for $n+1$. We therefore consider

$$
S_{n+1}=S_{n}+T_{n+1},
$$

where S_{n} and T_{n+1} are independent random variables with distributions given by (14), for $s>0$, and (10), respectively. Thus, using the convolution formula in (16), this time for S_{n} and T_{n+1} in place of T_{1} and T_{2},

$$
\begin{aligned}
f_{S_{n+1}}(s) & =\int_{-\infty}^{\infty} f_{S_{n}}(\tau) f_{T_{n+1}}(s-\tau) d \tau \\
& =\int_{0}^{s} \lambda e^{-\lambda \tau} \frac{(\lambda \tau)^{n-1}}{(n-1)!} \lambda e^{-\lambda(s-\tau)} d \tau \\
& =\frac{\lambda^{n+1}}{(n-1)!} e^{-\lambda s} \int_{0}^{s} \tau^{n-1} d \tau \\
& =\frac{\lambda^{n+1}}{(n-1)!} e^{-\lambda s} \frac{s^{n}}{n}
\end{aligned}
$$

which we can rewrite as

$$
f_{S_{n+1}}(s)=\lambda e^{-\lambda s} \frac{(\lambda s)^{n}}{n!}, \quad \text { for } s>0
$$

which is (15) for $n+1$ in place of n.
(f) Use the result in (15) to derive the formula

$$
\begin{equation*}
P_{m}(t)=\frac{(\lambda t)^{m}}{m!} e^{-\lambda t}, \quad \text { for } m=0,1,2,3, \ldots, \text { and } t \geqslant 0 \tag{17}
\end{equation*}
$$

Suggestion: Consider the events

$$
[M(t) \geqslant n] \quad \text { and } \quad\left[S_{n} \leqslant t\right]
$$

and note that

$$
[M(t)=n]=[n \leqslant M(t)<n+1]
$$

Solution: We compute

$$
\begin{equation*}
\operatorname{Pr}(M(t)=m)=\operatorname{Pr}(m \leqslant M(t)<m+1) \tag{18}
\end{equation*}
$$

Note that the $S_{n} \leqslant t$ if and only if there have been at least n occurrences at in the interval $[0, t]$; consequently

$$
\begin{equation*}
(M(t) \geqslant n) \text { and }\left(S_{n} \leqslant t\right) \text { are the same events. } \tag{19}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
(M(t) \geqslant n+1) \text { and }\left(S_{n+1} \leqslant t\right) \text { are the same events. } \tag{20}
\end{equation*}
$$

Now, it follows from

$$
(M(t) \geqslant m)=(m \leqslant M(t)<m+1) \cup(M(t) \geqslant m+1)
$$

that

$$
\operatorname{Pr}(M(t) \geqslant m)=\operatorname{Pr}(m \leqslant M(t)<m+1)+\operatorname{Pr}(M(t) \geqslant m+1)
$$

from which we get that

$$
\operatorname{Pr}(m \leqslant M(t)<m+1)=\operatorname{Pr}(M(t) \geqslant m)-\operatorname{Pr}(M(t) \geqslant m+1)
$$

consequently, in view of (19) and (20)

$$
\begin{equation*}
\operatorname{Pr}(m \leqslant M(t)<m+1)=\operatorname{Pr}\left(S_{m} \leqslant t\right)-\operatorname{Pr}\left(S_{m+1} \leqslant t\right) \tag{21}
\end{equation*}
$$

Next, use the distribution function in (15) to compute

$$
\operatorname{Pr}\left(S_{m} \leqslant t\right)=\int_{0}^{t} \lambda e^{-\lambda s} \frac{(\lambda s)^{m-1}}{(m-1)!} d s
$$

which we can evaluate using integration by parts.
Set

$$
u=\lambda e^{-\lambda s} \quad \text { and } \quad d v=\frac{(\lambda s)^{m-1}}{(m-1)!}
$$

so that,

$$
d u=-\lambda^{2} e^{-\lambda s} d s \quad \text { and } \quad v=\frac{1}{\lambda} \frac{(\lambda s)^{m}}{m!} .
$$

Thus,

$$
\operatorname{Pr}\left(S_{m} \leqslant t\right)=\left.\frac{(\lambda s)^{m}}{m!} e^{-\lambda s}\right|_{0} ^{t}+\int_{0}^{t} \lambda e^{-\lambda s} \frac{(\lambda s)^{m}}{m!} d s
$$

or

$$
\begin{equation*}
\operatorname{Pr}\left(S_{m} \leqslant t\right)=\frac{(\lambda t)^{m}}{m!} e^{-\lambda t}+\operatorname{Pr}\left(S_{m+1} \leqslant t\right) \tag{22}
\end{equation*}
$$

Comparing (21) and (22) we see that

$$
\begin{equation*}
\operatorname{Pr}(m \leqslant M(t)<m+1)=\frac{(\lambda t)^{m}}{m!} e^{-\lambda t}, \tag{23}
\end{equation*}
$$

for $m=0,1,2,3, \ldots$, and $t \geqslant 0$.
The statement in (17) now follows from (18) and (23).
(g) Suppose that exactly one event has occurred in the time interval $[0, \tau]$. We consider the time of occurrence, T_{1}, of that event. Compute the conditional probability

$$
\operatorname{Pr}\left[T_{1} \leqslant t \mid M(\tau)=1\right], \text { for } 0<t<\tau
$$

Suggestion: Consider the events

$$
\left[T_{1} \leqslant t, M(\tau)=1\right] \quad \text { and } \quad[M(t)=1, M(\tau)-M(t)=0]
$$

for $0<t<\tau$.
Solution: By the definition of conditional probability,

$$
\begin{equation*}
\operatorname{Pr}\left(T_{1} \leqslant t \mid M(\tau)=1\right)=\frac{\operatorname{Pr}\left(T_{1} \leqslant t \mid M(\tau)=1\right)}{\operatorname{Pr}(M(\tau)=1)} \tag{24}
\end{equation*}
$$

where, according to (17),

$$
\begin{equation*}
\operatorname{Pr}(M(\tau)=1)=\lambda \tau e^{-\lambda \tau} \tag{25}
\end{equation*}
$$

Note that, for $0<t<\tau$,

$$
\left(T_{1} \leqslant t, M(\tau)=1\right) \text { and }(M(t)=1, M(\tau)-M(t)=0)
$$

since the first occurrence in $(0, t]$ and no occurrence in $(t \tau]$ is the same as exactly one occurrence in $(0, \tau]$ and the time of the first occurrence and t coming after the first occurrence. Consequently,

$$
\operatorname{Pr}\left(T_{1} \leqslant t, M(\tau)=1\right)=\operatorname{Pr}(M(t)=1, M(\tau)-M(t)=0)
$$

so that, using axioms (i), (ii) and (iii),

$$
\operatorname{Pr}\left(T_{1} \leqslant t, M(\tau)=1\right)=\operatorname{Pr}(M(t)=1) \cdot \operatorname{Pr}(M(\tau-t)=0)
$$

or

$$
\operatorname{Pr}\left(T_{1} \leqslant t, M(\tau)=1\right)=\lambda t e^{-\lambda t} \cdot e^{-\lambda(\tau-t)}
$$

or

$$
\begin{equation*}
\operatorname{Pr}\left(T_{1} \leqslant t, M(\tau)=1\right)=\lambda t \cdot e^{-\lambda \tau} \tag{26}
\end{equation*}
$$

Combining (24), (25) and (26) we see that

$$
\begin{equation*}
\operatorname{Pr}\left(T_{1} \leqslant t \mid M(\tau)=1\right)=\frac{t}{\tau}, \quad \text { for } 0<t<\tau \tag{27}
\end{equation*}
$$

2. The Error function, Erf: $\mathbb{R} \rightarrow \mathbb{R}$, is defined by

$$
\begin{equation*}
\operatorname{Erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-s^{2}} d s, \quad \text { for } x \in \mathbb{R} \tag{28}
\end{equation*}
$$

Use the fact that

$$
\begin{equation*}
\int_{0}^{\infty} e^{-s^{2}} d s=\frac{\sqrt{\pi}}{2} \tag{29}
\end{equation*}
$$

to deduce that
(a) $\lim _{x \rightarrow \infty} \operatorname{Erf}(x)=1$; and
(b) $\lim _{x \rightarrow-\infty} \operatorname{Erf}(x)=-1$.

Solution:

(a) The expression in (29) is equivalent to

$$
\lim _{x \rightarrow \infty} \int_{0}^{x} e^{-s^{2}} d s=\frac{\sqrt{\pi}}{2}
$$

or

$$
\lim _{x \rightarrow \infty} \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-s^{2}} d s=1
$$

from which we get that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \operatorname{Erf}(x)=1, \tag{30}
\end{equation*}
$$

which was to be shown.
(b) Since the map $s \mapsto e^{-s^{2}}$ is even, it follows that, for any $x<0$,

$$
\int_{x}^{0} e^{-s^{2}} d s=\int_{0}^{-x} e^{-s^{2}} d s
$$

so that

$$
-\int_{0}^{x} e^{-s^{2}} d s=\int_{0}^{-x} e^{-s^{2}} d s
$$

which yields

$$
\operatorname{Erf}(x)=-\operatorname{Erf}(-x), \quad \text { for all } x<0
$$

Thus,

$$
\begin{equation*}
\lim _{x \rightarrow-\infty} \operatorname{Erf}(x)=-\lim _{x \rightarrow-\infty} \operatorname{Erf}(-x) \tag{31}
\end{equation*}
$$

Making the change of variables $y=-x$ on the right-hand side of (31) we see that

$$
\begin{equation*}
\lim _{x \rightarrow-\infty} \operatorname{Erf}(x)=-\lim _{y \rightarrow \infty} \operatorname{Erf}(y) \tag{32}
\end{equation*}
$$

Combining (30) and (32)

$$
\begin{equation*}
\lim _{x \rightarrow-\infty} \operatorname{Erf}(x)=-1 \tag{33}
\end{equation*}
$$

which was to be shown.
3. Solving the Heat Equation. In this problem we compute a solution of the initial value problem

$$
\left\{\begin{align*}
\frac{\partial u}{\partial t} & =D \frac{\partial^{2} u}{\partial x^{2}}, & & x \in \mathbb{R}, t>0 \tag{34}\\
u(x, 0) & =f(x), & & x \in \mathbb{R}
\end{align*}\right.
$$

where

$$
f(x)= \begin{cases}1, & \text { if } x \leqslant 0 \tag{35}\\ 0, & \text { if } x>0\end{cases}
$$

(a) Use the heat kernel to give a solution of the IVP (34).

Solution: A candidate for a solution is given by

$$
\begin{equation*}
u(x, t)=\int_{-\infty}^{\infty} p(x-y, t) f(y) d y, \quad \text { for } x \in \mathbb{R} \text { and } t>0 \tag{36}
\end{equation*}
$$

where

$$
\begin{equation*}
p(x, t)=\frac{e^{-x^{2} / 4 D t}}{\sqrt{4 \pi D t}}, \quad \text { for } x \in \mathbb{R} \text { and } t>0 \tag{37}
\end{equation*}
$$

Use (35) and (37) to obtain from (36) that

$$
\begin{equation*}
u(x, t)=\int_{-\infty}^{0} \frac{e^{-(x-y)^{2} / 4 D t}}{\sqrt{4 \pi D t}} d y, \quad \text { for } x \in \mathbb{R} \text { and } t>0 \tag{38}
\end{equation*}
$$

Make the change variables $s=\frac{x-y}{\sqrt{4 D t}}$ in (38) to obtain

$$
u(x, t)=-\frac{1}{\sqrt{\pi}} \int_{\infty}^{x / \sqrt{4 D t}} e^{-s^{2}} d s, \quad \text { for } x \in \mathbb{R} \text { and } t>0
$$

or

$$
u(x, t)=\frac{1}{\sqrt{\pi}} \int_{x / \sqrt{4 D t}}^{\infty} e^{-s^{2}} d s, \quad \text { for } x \in \mathbb{R} \text { and } t>0
$$

or

$$
u(x, t)=\frac{1}{2}\left(\frac{2}{\sqrt{\pi}} \int_{0}^{\infty} e^{-s^{2}} d s-\frac{2}{\sqrt{\pi}} \int_{0}^{x / \sqrt{4 D t}} e^{-s^{2}} d s\right)
$$

for $x \in \mathbb{R}$ and $t>0$; so that, using (29) and the definition of the Error function in (28),

$$
\begin{equation*}
u(x, t)=\frac{1}{2}\left[1-\operatorname{Erf}\left(\frac{x}{\sqrt{4 D t}}\right)\right], \quad \text { for } x \in \mathbb{R} \text { and } t>0 \tag{39}
\end{equation*}
$$

(b) Use a mathematical software package to sketch the graph of $x \mapsto u(x, t)$ for several values of $t>0$, where $u(x, t)$ is the solution of the initial value problem (34) with initial condition in (35) obtained in part (a).
Solution: Set $4 D=1$ in (39) to get

$$
\begin{equation*}
u(x, t)=\frac{1}{2}\left[1-\operatorname{Erf}\left(\frac{x}{\sqrt{t}}\right)\right], \quad \text { for } x \in \mathbb{R} \text { and } t>0 \tag{40}
\end{equation*}
$$

Figure shows sketches of the graphs of $y=u(x, t)$ for $t=0.1,1,10$

Figure 1: Sketch of Graph of $y=u(x, t)$ for $t=0.1,1,10$
(c) Let $u(x, t)$ be the solution to the initial value problem (34) with initial condition in (35) obtained in part (a). Compute the following
(i) $\lim _{t \rightarrow 0^{+}} u(x, t)$, for $x=0$ and for $x \neq 0$.

Solution: Let $u(x, t)$ be as given in (39); then, for $x=0$ we get

$$
\lim _{t \rightarrow 0^{+}} u(x, t)=\frac{1}{2} .
$$

For $x \neq 0$, we consider two possibilities: $x<0$ and $x>0$.
If $x<0$, we obtain

$$
\lim _{t \rightarrow 0^{+}} u(x, t)=\lim _{t \rightarrow 0^{+}} \frac{1}{2}\left[1-\operatorname{Erf}\left(\frac{x}{\sqrt{4 D t}}\right)\right]=\frac{1}{2}[1-(-1)]=1 .
$$

If $x>0$,

$$
\lim _{t \rightarrow 0^{+}} u(x, t)=\lim _{t \rightarrow 0^{+}} \frac{1}{2}\left[1-\operatorname{Erf}\left(\frac{x}{\sqrt{4 D t}}\right)\right]=\frac{1}{2}[1-1]=0
$$

(ii) $\lim _{x \rightarrow 0} u(x, t)$, for all $t>0$.

Solution: Compute

$$
\lim _{x \rightarrow 0} u(x, t)=\lim _{x \rightarrow 0} \frac{1}{2}\left[1-\operatorname{Erf}\left(\frac{x}{\sqrt{4 D t}}\right)\right]=\frac{1}{2}[1-0]=\frac{1}{2} .
$$

(d) Let $u(x, t)$ be the solution of the initial value problem (34) with initial condition in (35) obtained in part (a). Compute the following
(i) $\lim _{t \rightarrow \infty} u(x, t)$, for $x=0$ and for $x \neq 0$.

Solution: We consider two cases: (i) $x=0$, and (ii) $x \neq 0$.
(i) If $x=0$,

$$
\lim _{t \rightarrow \infty} u(x, t)=\frac{1}{2}
$$

(ii) If $x \neq 0$,

$$
\lim _{t \rightarrow \infty} u(x, t)=\lim _{t \rightarrow \infty} \frac{1}{2}\left[1-\operatorname{Erf}\left(\frac{x}{\sqrt{4 D t}}\right)\right]=\frac{1}{2}[1-0]=\frac{1}{2} .
$$

Thus, in both cases $\lim _{t \rightarrow \infty} u(x, t)=\frac{1}{2}$.
(ii) $\lim _{x \rightarrow \infty} u(x, t)$, for all $t>0$.

Solution: Compute

$$
\lim _{x \rightarrow \infty} u(x, t)=\lim _{x \rightarrow \infty} \frac{1}{2}\left[1-\operatorname{Erf}\left(\frac{x}{\sqrt{4 D t}}\right)\right]=\frac{1}{2}[1-1]=0
$$

(iii) $\lim _{x \rightarrow-\infty} u(x, t)$, for all $t>0$.

Solution: Compute

$$
\lim _{x \rightarrow-\infty} u(x, t)=\lim _{x \rightarrow-\infty} \frac{1}{2}\left[1-\operatorname{Erf}\left(\frac{x}{\sqrt{4 D t}}\right)\right]=\frac{1}{2}[1-(-1)]=1
$$

