Solutions to Assignment \#11

1. Use the method of separation of variables to find all solutions of the differential equation

$$
\frac{d y}{d t}=t e^{y}
$$

Solution: Separate variables to obtain

$$
\begin{equation*}
\int e^{-y} d u=\int t d t \tag{1}
\end{equation*}
$$

Evaluating the integrals in (1) yields

$$
\begin{equation*}
-e^{-y}=\frac{t^{2}}{2}+c_{1} \tag{2}
\end{equation*}
$$

for an arbitrary constant c_{1}. Multiplying the equation in (2) by -1 and relabeling the constant $-c_{1}$ by c, we obtain

$$
\begin{equation*}
e^{-y}=c-\frac{t^{2}}{2} \tag{3}
\end{equation*}
$$

Taking the natural logarithm on both sides of (3) yields

$$
-y=\ln \left(c-\frac{t^{2}}{2}\right)
$$

from which we get that

$$
y(t)=\ln \left(c-\frac{t^{2}}{2}\right)^{-1}
$$

2. Use separation of variables to find all solutions of the differential equation

$$
\frac{d y}{d t}=3 t y-t
$$

Solution: Separate variables to obtain

$$
\int \frac{1}{y-1 / 3} d y=\int 3 t d t
$$

which integrates to

$$
\begin{equation*}
\ln \left|y-\frac{1}{3}\right|=\frac{3}{2} t^{2}+c_{1} \tag{4}
\end{equation*}
$$

Applying the exponential function to both sides of (4) yields

$$
\begin{equation*}
\left|y-\frac{1}{3}\right|=c_{2} e^{3 t^{2} / 2} \tag{5}
\end{equation*}
$$

where we have set $c_{2}=e^{c_{1}}$. Using the continuity of the exponential function and that of y, we obtain from (5) that

$$
y(t)=\frac{1}{3}+c e^{3 t^{2} / 2}
$$

3. Find a solution of the differential equation

$$
\frac{d y}{d t}=y^{2}
$$

satisfying $y=1$ when $t=1$. Give the domain of the definition for the function.
Solution: Separating variables we obtain that

$$
\int \frac{1}{y^{2}} d y=\int d t
$$

which integrates to

$$
\begin{equation*}
-\frac{1}{y}=t+c_{1} \tag{6}
\end{equation*}
$$

for arbitrary constant c_{1}. Multiplying both sides of the equation in (6) by -1 and setting $c=-c_{1}$, we obtain from (6) that

$$
\begin{equation*}
\frac{1}{y}=c-t \tag{7}
\end{equation*}
$$

Solving for y in (7) yields the general solution

$$
\begin{equation*}
y(t)=\frac{1}{c-t} \tag{8}
\end{equation*}
$$

Next, use the initial condition $y(1)=1$ to obtain from (8) that

$$
\frac{1}{c-1}=1
$$

from which we get that $c=2$, so that

$$
y(t)=\frac{1}{2-t}, \quad \text { for } t<2
$$

is a solution to the initial value problem

$$
\left\{\begin{aligned}
\frac{d y}{d t} & =y^{2} \\
y(1) & =1
\end{aligned}\right.
$$

Observe that the solution is defined on the open interval $(-\infty, 2)$.
4. Use separation of variable to find a solution of the differential equation

$$
\frac{d y}{d t}=\sqrt{y}
$$

satisfying $y=0$ when $t=0$. Can you come up with another solution of the initial value problem?
Solution: Separating variables we obtain that

$$
\int \frac{1}{\sqrt{y}} d y=\int d t
$$

which integrates to

$$
\begin{equation*}
2 \sqrt{y}=t+c, \tag{9}
\end{equation*}
$$

for arbitrary constant c. Dividing the equation in (9) by 2 and squaring on both sides yields

$$
\begin{equation*}
y(t)=\frac{1}{4}(t+c)^{2} \tag{10}
\end{equation*}
$$

Using the condition $y(0)=0$ in (10) yields $c=0$, so that

$$
y(t)=\frac{1}{4} t^{2}, \quad \text { for all } t \in \mathbb{R}
$$

is a solution of the initial value problem

$$
\left\{\begin{align*}
\frac{d y}{d t} & =\sqrt{y} \tag{11}\\
y(0) & =0
\end{align*}\right.
$$

Note that the constant function $v(t)=0$, for all $t \in \mathbb{R}$, is also a solution of the initial value problem in (11); so the initial value problem in (11) has at least to solutions.
5. Solve the initial value problem

$$
y \frac{d y}{d t}=t, \quad y(0)=1
$$

Solution: Separate variable to obtain

$$
\int y d y=\int t d t
$$

which integrates to

$$
\begin{equation*}
\frac{1}{2} y^{2}=\frac{1}{2} t^{2}+c_{1} \tag{12}
\end{equation*}
$$

for arbitrary constant c_{1}. Multiply the equation in (12) by 2 and set $c=2 c_{1}$ to obtain

$$
\begin{equation*}
y^{2}=t^{2}+c \tag{13}
\end{equation*}
$$

Using the initial condition, $y(0)=1$ in (13) yields $c=1$, so that

$$
y(t)=\sqrt{1+t^{2}}, \quad \text { for } t \in \mathbb{R}
$$

is a solution of the initial value problem.

