Solutions to Assignment \#12

1. Solve the initial value problem

$$
\begin{equation*}
\frac{d y}{d t}=-y+t, \quad y(0)=0 \tag{1}
\end{equation*}
$$

Solution: Rewrite the equation as

$$
\frac{d y}{d t}+y=t
$$

and multiply by e^{t} to obtain

$$
e^{t} \frac{d y}{d t}+e^{t} y=t e^{t}
$$

which can be written as

$$
\begin{equation*}
\frac{d}{d t}\left[e^{t} y\right]=t e^{t} \tag{2}
\end{equation*}
$$

by virtue of the product rule. Integrating on both sides of (2) yields

$$
\begin{equation*}
e^{t} y=\int t e^{t} d t \tag{3}
\end{equation*}
$$

In order to evaluate the integral on the right-hand side of (3), use integration by parts: Set

$$
\begin{aligned}
& u=t \quad \text { and } \quad d v=e^{t} d t \\
& \text { then, } d u=d t \text { and } v=e^{t} \text {, }
\end{aligned}
$$

so that

$$
\int t e^{t} d t=t e^{t}-\int e^{t} d t
$$

from which we get that

$$
\begin{equation*}
\int t e^{t} d t=t e^{t}-e^{t}+c \tag{4}
\end{equation*}
$$

where c is an arbitrary constant. Substituting the result in (4) into the righthand side of (3) yields

$$
\begin{equation*}
e^{t} y=t e^{t}-e^{t}+c \tag{5}
\end{equation*}
$$

Solving for y in (6) we obtain

$$
\begin{equation*}
y(t)=t-1+c e^{-t}, \quad \text { for all } t \in \mathbb{R} \tag{6}
\end{equation*}
$$

Using the initial condition, $y(0)=0$, in (6) we have that $-1+c=0$, which implies that $c=1$. Thus,

$$
y(t)=t-1+e^{-t}, \quad \text { for all } t \in \mathbb{R},
$$

solves the initial value problem in (1).
2. For each $b>0$, evaluate

$$
\begin{equation*}
F(b)=\int_{0}^{b} t e^{-t} d t \tag{7}
\end{equation*}
$$

Then, compute $\lim _{b \rightarrow \infty} F(b)$, if it exists.
Solution: Use integration by parts to evaluate the integral $\int t e^{-t} d t$. Set

$$
\begin{array}{rll}
u=t & \text { and } & d v=e^{-t} d t \\
\text { then, } d u=d t & \text { and } & v=-e^{t}
\end{array}
$$

so that

$$
\int t e^{-t} d t=-t e^{-t}+\int e^{-t} d t
$$

from which we get that

$$
\begin{equation*}
\int t e^{-t} d t=-t e^{-t}-e^{-t}+c \tag{8}
\end{equation*}
$$

for arbitrary c. We can use the result in (8) to evaluate the definite integral in (7) to obtain that

$$
\begin{equation*}
F(b)=\left[-t e^{-t}-e^{-t}\right]_{0}^{b}=1-b e^{-b}-e^{-b} \tag{9}
\end{equation*}
$$

It follows from (9) and L'Hospital's rule that

$$
\lim _{b \rightarrow \infty} F(b)=1
$$

3. Let $f(t)=t \sin t$ and evaluate the area the region in the $t y$-plane under the graph of $y=f(t)$, bounded by the t-axis, and between $t=0$ and $t=\pi$.

Solution: The area of the region is given by $\int_{0}^{\pi} t \sin t d t$. We evaluate the indefinite integral $\int t \sin t d t$ by means of integration by parts. Set

$$
\begin{aligned}
& u=t \quad \text { and } \quad d v=\sin t d t \\
& \text { then, } d u=d t \text { and } v=-\cos t,
\end{aligned}
$$

so that

$$
\int t e^{-t} d t=-t \cos t+\int \cos t d t
$$

from which we get that

$$
\begin{equation*}
\int t \sin t d t=-t \cos t+\sin t+c \tag{10}
\end{equation*}
$$

for arbitrary c. We can use the result in (10) to evaluate the definite integral

$$
\int_{0}^{\pi} t \sin t d t=[-t \cos t+\sin t]_{0}^{\pi}=\pi
$$

Thus, the area of the region is π.
4. Let $f(t)=t \ln t$ for all $t>0$. In Problem 3 of Assignment $\# 5$, you were asked to sketch the graph of $y=f(t)$. Evaluate the area of the region in the $t y$-plane which is below the t-axis and above the graph of $y=f(t)$.
Solution: A sketch of the region, R, is shown in Figure 2. From the sketch of

Figure 1: Sketch of graph of $y=f(t)$ in Problem 4
the region we see that the area of the region is

$$
\begin{equation*}
\operatorname{area}(R)=-\int_{0}^{1} t \ln t d t \tag{11}
\end{equation*}
$$

In order to evaluate the integral in (11), we first evaluate the indefinite integral $\int t \ln t d t$ via integration by parts. Set

$$
u=\ln t \quad \text { and } \quad d v=t d t
$$

$$
\text { then, } d u=\frac{1}{t} d t \quad \text { and } \quad v=\frac{1}{2} t^{2}
$$

so that

$$
\begin{aligned}
\int t \ln t d t & =\frac{t^{2}}{2} \ln t-\int \frac{1}{2} t^{2} \cdot \frac{1}{t} d t \\
& =\frac{t^{2}}{2} \ln t-\frac{1}{2} \int t d t
\end{aligned}
$$

so that

$$
\begin{equation*}
\int t \ln t d t=\frac{t^{2}}{2} \ln t-\frac{t^{2}}{4}+c \tag{12}
\end{equation*}
$$

for arbitrary c.
In order to evaluate the definite integral on the right-hand side of (11), we first evaluate the integral $\int_{\varepsilon}^{1} t \ln t$, for $0<\varepsilon<1$. Using (12) we compute

$$
\int_{\varepsilon}^{1} t \ln t d t=\left[\frac{t^{2}}{2} \ln t-\frac{t^{2}}{4}\right]_{\varepsilon}^{1}
$$

which yields

$$
\begin{equation*}
\int_{\varepsilon}^{1} t \ln t d t=-\frac{1}{4}-\frac{\varepsilon^{2}}{2} \ln \varepsilon+\frac{\varepsilon^{2}}{4} \tag{13}
\end{equation*}
$$

Observe that, by L'Hospital's rule,

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0^{+}} \frac{\varepsilon^{2}}{2} \ln \varepsilon & =\lim _{\varepsilon \rightarrow 0^{+}} \frac{\ln \varepsilon}{2 / \varepsilon^{2}} \\
& =\lim _{\varepsilon \rightarrow 0^{+}} \frac{1 / \varepsilon}{-4 / \varepsilon^{3}} \\
& =-\frac{1}{4} \lim _{\varepsilon \rightarrow 0^{+}} \varepsilon^{2} \\
& =0
\end{aligned}
$$

It then follows from (13) that

$$
\begin{equation*}
\int_{0}^{1} t \ln t d t=\lim _{\varepsilon \rightarrow 0^{+}} \int_{\varepsilon}^{1} t \ln t d t=-\frac{1}{4} \tag{14}
\end{equation*}
$$

Combining (11) and (14) we see that $\operatorname{area}(R)=\frac{1}{4}$, so that the area of the region R in Figure 2 is $1 / 4$.
5. For each $t>0$, define $F(t)$ to be the area in the τy-pane under the graph of $y=\tau^{2} e^{-\tau}$ from $\tau=0$ to $\tau=t$.
(a) Obtain a formula for computing $F(t)$, for $t>0$.

Solution: We begin with

$$
\begin{equation*}
F(t)=\int_{0}^{t} \tau^{2} e^{-\tau} d \tau \tag{15}
\end{equation*}
$$

In order to compute the integral in (15), we first evaluate the indefinite integral $\int \tau^{2} e^{-\tau} d \tau$ via integration by parts. Set

$$
\begin{array}{rll}
u=\tau^{2} & \text { and } \quad & d v=e^{-\tau} d \tau \\
\text { then, } & d u=2 \tau d \tau & \text { and } \quad \\
v=-e^{-\tau}
\end{array}
$$

so that

$$
\begin{equation*}
\int \tau^{2} e^{-\tau} d \tau=-\tau^{2} e^{-\tau}+\int 2 \tau e^{-\tau} d \tau \tag{16}
\end{equation*}
$$

We integrate by parts the integral on the right-hand side of (16) by setting

$$
\begin{array}{rll}
u=2 \tau & \text { and } & d v=e^{-\tau} d \tau \\
\text { then, } d u=2 d \tau & \text { and } & v=-e^{-\tau}
\end{array}
$$

so that

$$
\int \tau^{2} e^{-\tau} d \tau=-\tau^{2} e^{-\tau}-2 \tau e^{-\tau}+2 \int e^{-\tau} d \tau
$$

from which we get that

$$
\begin{equation*}
\int \tau^{2} e^{-\tau} d \tau=-\tau^{2} e^{-\tau}-2 \tau e^{-\tau}-2 e^{-\tau}+c \tag{17}
\end{equation*}
$$

for arbitrary c. Using the result in (17) we obtain from (15) that

$$
F(t)=\left[-\tau^{2} e^{-\tau}-2 \tau e^{-\tau}-2 e^{-\tau}\right]_{0}^{t}
$$

which yields the formula

$$
\begin{equation*}
F(t)=2-t^{2} e^{-t}-2 b e^{-t}-2 e^{-t} \tag{18}
\end{equation*}
$$

for computing $F(t)$, for $t>0$.
(b) Determine the values of t for which $F(t)$ increases or decreases, and the values of t for which the graph of $y=F(t)$ is concave up or concave down.
Solution: We compute $F^{\prime}(t)$ from (15) via the Fundamental Theorem of Calculus to obtain

$$
\begin{equation*}
F^{\prime}(t)=t^{2} e^{-t}, \quad \text { for all } t \tag{19}
\end{equation*}
$$

Differentiate (19) with respect to t to obtain

$$
\begin{equation*}
F^{\prime \prime}(t)=2 t e^{-t}-t^{2} e^{-t}, \quad \text { for all } t \tag{20}
\end{equation*}
$$

where we have used the product rule and the Chain Rule. Simplifying the right-hand side of (20) yields

$$
\begin{equation*}
F^{\prime \prime}(t)=t(2-t) e^{-t}, \quad \text { for all } t \tag{21}
\end{equation*}
$$

It follows from (19) the $F^{\prime}(t)>0$ for all $t>0$; thus, $F(t)$ increases for all $t>0$.
Next, obtain from (21) that, for $t>0, F^{\prime \prime}(t)>0$ for $0<t<2$, and $F^{\prime \prime}(t)<0$ for $t>2$. We therefore conclude that the graph of $y=F(t)$ concave up over the interval $(0,2)$, and concave down for $t>2$.
(c) Sketch the graph of $y=F(t)$.

Solution: First, note that from the formula in we obtain that

$$
\lim _{t \rightarrow \infty} F(t)=2,
$$

where we have used L'Hospital's Rule. Using this information along with the quialitative information obtained in part (b) we get the gaph of $y=$ $F(t)$, for $t>0$, sketched in Figure 2.

Figure 2: Sketch of graph of $y=F(t)$

