Solutions to Assignment #13

1. Use the method of integrating factor discussed in Section 4.8.5 in the class lecture notes to find the general solution of the linear, first order differential equation with constant coefficients

$$\frac{dy}{dt} = ay + b,\tag{1}$$

where a and b are constant with $a \neq 0$.

Compare your result to what you obtain when you solve (1) via separation of variables.

Solution: Write the equation (1) in the form

$$\frac{dy}{dt} - ay = b, (2)$$

and multiply by e^{-at} on both sides (2) to obtain

$$e^{-at}\frac{dy}{dt} - ae^{-at}y = be^{-at},$$

which can be written as

$$\frac{d}{dt}\left[e^{-at}y\right] = be^{-at},\tag{3}$$

by virtue of the product rule. Integrating on both sides of (3) with respect to t we obtain

$$e^{-at}y = -\frac{b}{a}e^{-at} + c, (4)$$

for arbitrary c. Next, multiply both sides of the equation in (4) by e^{at} to obtain the general solution

$$y(t) = -\frac{b}{a} + c \ e^{at}$$

which is the same solution given by the method of separation of variables. \Box

2. Use the method of integrating factor discussed in Section 4.8.5 to find the general solution of the linear, first order differential equation

$$\frac{dy}{dt} = 2ty + t. \tag{5}$$

Solution: Rewrite the equation in (5) as

$$\frac{dy}{dt} - 2ty = t, (6)$$

Math 31S. Rumbos

Fall 2016 2

and multiply on both sides of (6) by the integrating factor $\mu(t) = e^{-t^2}$ to obtain

$$e^{-t^2}\frac{dy}{dt} - 2te^{-t^2}y = te^{-t^2}.$$
(7)

Next, use the product rule to see that (7) can be written as

$$\frac{d}{dt}\left[e^{-t^2}y\right] = te^{-t^2}.$$
(8)

Integrate on both sides of (8) with respect to t to obtain

$$e^{-t^2}y = -\frac{1}{2}e^{-t^2} + c, (9)$$

for arbitrary c. Finally, multiply on both sides of (9) by e^{t^2} to solve for y,

$$y(t) = -\frac{1}{2} + c e^{t^2}$$
, for all t .

3. Find the general solution of the linear, first order differential equation

$$\frac{dy}{dt} = y + e^{2t}.$$
(10)

Solution: Rewrite the equation in (10) as

$$\frac{dy}{dt} - y = e^{2t},\tag{11}$$

and multiply on both sides of (11) by the integrating factor $\mu(t) = e^{-t}$ to obtain

$$e^{-t}\frac{dy}{dt} - e^{-t}y = e^t,$$

which can be written as

$$\frac{d}{dt}\left[e^{-t}y\right] = e^t,\tag{12}$$

by virtue of the product rule. Integrating on both sides of (12) with respect to t yields

$$e^{-t}y = e^t + c.$$
 (13)

for arbitrary c. Solving for y in (13) yields the general solution

$$y(t) = e^{2t} + c \ e^t, \quad \text{for all } t.$$

Math 31S. Rumbos

4. Find the general solution of the linear, first order differential equation

$$\frac{dy}{dt} = -\frac{1}{2t}y + t, \quad \text{for } t > 0.$$
(14)

Solution: Rewrite the equation in (14) as

$$\frac{dy}{dt} + \frac{1}{2t}y = t, \quad \text{for } t > 0.$$
(15)

In this case, an integrating factor is provided by

$$\mu(t) = \exp\left(\int \frac{1}{2t} dt\right)$$
$$= \exp\left(\frac{1}{2}\ln t\right)$$
$$= \exp\left(\ln\sqrt{t}\right)$$
$$= \sqrt{t},$$

for t > 0. Thus, multiplying on both sides of (15) by $\mu(t) = \sqrt{t}$, for t > 0, yields

$$\sqrt{t}\frac{dy}{dt} + \frac{1}{2\sqrt{t}}y = t^{3/2}, \quad \text{for } t > 0.$$

which can be written as

$$\frac{d}{dt}\left[\sqrt{t}y\right] = t^{3/2}, \quad \text{for } t > 0, \tag{16}$$

by virtue of the product rule.

Next, integrate (16) with respect to t to get

$$\sqrt{t}y = \frac{2}{5}t^{5/2} + c, \quad \text{for } t > 0,$$
 (17)

and for arbitrary c.

Finally, solving for y in (17) yields the general solution

$$y(t) = \frac{2}{5}t^2 + \frac{c}{\sqrt{t}}, \quad \text{for } t > 0.$$
 (18)

Math 31S. Rumbos

5. Solve the initial value problem

$$\frac{dy}{dt} = -\frac{1}{2t}y + t, \quad \text{for } t > 0, \qquad y(1) = 0.$$
 (19)

Solution: The general solution of the differential equation in (19) is given in (18). Using the initial condition the yields

$$\frac{2}{5} + c = 0,$$

which yields $c = -\frac{2}{5}$. Substituting this value of c into the formula for y(t) in (18) then yields

$$y(t) = \frac{2}{5} \left(t^2 - \frac{1}{\sqrt{t}} \right), \quad \text{for } t > 0.$$