Solutions to Assignment \#14

1. For any population, ignoring migration, harvesting, or predation, one can model the relative growth rate by the following conservation principle

$$
\frac{1}{N} \frac{d N}{d t}=\text { birth rate (per capita) - death rate }(\text { per capita })=b-d
$$

where b and d could be functions of time and the population density N.
(a) Suppose that b and d are linear functions of N given by $b=b_{o}-\alpha N$ and $d=d_{o}+\beta N$ where b_{o}, d_{o}, α and β are positive constants. Assume that $b_{o}>d_{o}$. Sketch the graphs of b and d as functions of N. Give a possible interpretation for these graphs.
Solution: Sketches of the graphs of the functions $b=b(N)$ and $d=d(N)$ are shown in Figure 1. In this model we assume that the per-capita birth

Figure 1: Sketch of graph birth and death rates
rate is a linear function of the population density that decreases with increasing density; while the per-capita death rate increases linearly with increasing density.
(b) Find the point where the two lines sketched in part (a) intersect. Let K denote the first coordinate of the point of intersection. Show that $K=$ $\frac{b_{o}-d_{o}}{\alpha+\beta} . K$ is the carrying capacity of the population.
Solution: The two lines in Figure 1 intersect when

$$
b_{o}-\alpha N=d_{o}+\beta N,
$$

which yields

$$
N=\frac{b_{o}-d_{o}}{\alpha+\beta}
$$

this is the carrying capacity.
(c) Show that $\frac{d N}{d t}=r N\left(1-\frac{N}{K}\right)$ where $r=b_{o}-d_{o}$ is the intrinsic growth rate.
Solution: Substitutes the expressions for b and d into the model

$$
\frac{1}{N} \frac{d N}{d t}=b-d
$$

to get

$$
\begin{aligned}
\frac{1}{N} \frac{d N}{d t} & =b_{o}-\alpha N-d_{o}-\beta N \\
& =b_{o}-d_{o}-(\alpha+\beta) N \\
& =\left(b_{o}-d_{o}\right)\left[1-\frac{\alpha+\beta}{b_{o}-d_{o}} N\right] \\
& =\left(b_{o}-d_{o}\right)\left[1-\frac{1}{K} N\right]
\end{aligned}
$$

where we have used $K=\frac{b_{o}-d_{o}}{\alpha+\beta}$. Setting $r=b_{o}-d_{o}$, we obtain the Logistic equation $\frac{d N}{d t}=r N\left(1-\frac{N}{K}\right)$.
2. Assume that a population of size $N=N(t)$ grows according to a logistic model with carrying capacity of 5×10^{8} individuals. Assume also that, when the population size is very small, the population doubles every 30 minutes. Suppose the initial population is 10^{8}. Estimate the size of the population two hours later.
Solution: For $N_{o}>0$, the solution to the initial value problem

$$
\left\{\begin{array}{l}
\frac{d N}{d t}=r N\left(1-\frac{N}{K}\right) \tag{1}\\
N(0)=N_{o}
\end{array}\right.
$$

is given by

$$
\begin{equation*}
N(t)=\frac{N_{o} K}{N_{o}+\left(K-N_{o}\right) e^{-r t}}, \quad \text { for } t>0 \tag{2}
\end{equation*}
$$

In this problem we have that $K=5 \times 10^{8}$ and $N_{o}=10^{8}$. We need to estimate the intrinsic growth rate r. For small population density, r can be approximated
by the Malthusian growth rate,

$$
\frac{\ln 2}{\tau_{2}}
$$

where τ_{2} is the doubling time. Thus,

$$
\begin{equation*}
r \doteq \frac{\ln 2}{0.5}=2 \ln 2 \doteq 1.3863 \tag{3}
\end{equation*}
$$

where we have used the doubling time in hours.
Using the expression for $N(t)$ in (1) we see that the population size two hours later will be

$$
\begin{equation*}
N(2)=\frac{N_{o} K}{N_{o}+\left(K-N_{o}\right) e^{-2 r}} . \tag{4}
\end{equation*}
$$

Substituting the given values for N_{o} and K, and the estimate for r in (3), we obtain from (4) the estimate

$$
N(2) \doteq 4 \times 10^{8}
$$

3. Let $N=N(t)$ denote the size of the population described in Problem 2, where t is measured in hours. Estimate the time that it will take the population to grow to 90% of its carrying capacity.
Solution: We solve the equation

$$
N(t)=0.90 K
$$

for t, where $N(t)$ is given by (2) to get

$$
\frac{N_{o} K}{N_{o}+\left(K-N_{o}\right) e^{-r t}}=0.90 K
$$

or

$$
\begin{equation*}
\frac{N_{o}}{N_{o}+\left(K-N_{o}\right) e^{-r t}}=0.90 \tag{5}
\end{equation*}
$$

Rearranging the equation in (5) yields

$$
0.10 N_{o}=\left(K-N_{o}\right) e^{-r t}
$$

which simplifies to

$$
0.10=4 e^{-r t}
$$

or

$$
e^{r t}=40,
$$

so that

$$
\begin{equation*}
t=\frac{1}{r} \ln (40) \tag{6}
\end{equation*}
$$

Using the estimate for r in (3) obtained in Problem 2, we obtain from (6) that

$$
t \doteq 2.66 \text { hours }
$$

Thus, it will take about 2 hours and 40 minutes for the population to grow to 90% of its carrying capacity.
4. Suppose that a population of size $N=N(t)$ grows according to the Logistic model. Assume that the population grows from a size N_{1} to a size N_{2} is an interval of time of length T. Show that

$$
\begin{equation*}
T=\int_{N_{1}}^{N_{2}} \frac{K}{r N(K-N)} d N \tag{7}
\end{equation*}
$$

where K is the carrying capacity and r is the intrinsic growth rate.
Solution: Set $N_{1}=N\left(t_{1}\right)$ and $N_{2}=N\left(t_{2}\right)$ and $T=t_{2}-t_{1}$. We want to find a formula for T.
From the Logistic equation we obtain

$$
\frac{d t}{d N}=\frac{K}{r N(K-N)}
$$

which can be separated to yield

$$
\begin{equation*}
d t=\frac{K}{r N(K-N)} d N \tag{8}
\end{equation*}
$$

Next, integrate on the left-hand side of (8) from t_{1} to t_{2} and on the right-hand side from $N\left(t_{1}\right)$ to $N\left(t_{2}\right)$ to get

$$
\int_{t_{1}}^{t_{2}} d t=\int_{N_{1}}^{N_{2}} \frac{K}{r N(K-N)} d N
$$

which yields (7) since $T=t_{2}-t_{1}$.
5. Suppose a population of size $N=N(t)$ grows logistically with intrinsic growth rate r and carrying capacity K. Use the formula (7) derived in Problem 4 to answer the following questions.
(a) Calculate the time that it takes for the population size to grow from $N_{1}=$ $K / 4$ to $N_{2}=K / 2$.
Solution: Rewrite the formula for T in (7) as

$$
\begin{equation*}
T=-\frac{K}{r} \int_{N_{1}}^{N_{2}} \frac{1}{N(N-K)} d N \tag{9}
\end{equation*}
$$

and use partial fractions to evaluate the integral on the right-hand side of (9). Write

$$
\begin{equation*}
\frac{1}{N(N-K)}=\frac{A}{N}+\frac{B}{N-K} \tag{10}
\end{equation*}
$$

where the constants A and B need to be determined. In then follows from (10) that

$$
\begin{equation*}
\int \frac{1}{N(N-K)} d N=A \ln |N|+B \ln |N-K|+c \tag{11}
\end{equation*}
$$

for arbitrary constant c.
In order to find the constants A and B, first multiply both sides of the equation in (10) by $N(N-K)$ to get

$$
1=A(N-K)+B N
$$

or

$$
\begin{equation*}
0 N+1=(A+B) N-A K \tag{12}
\end{equation*}
$$

Note that the right-hand side of the equation in (12) is polynomial in N. The constant, 1 , in the left-hand side of (12) can also be thought of as a polynomial in N when written as $0 N+1$. Two polynomials are equal if and only if corresponding coefficients are equal. Hence, the equality in (12) implies that

$$
\left\{\begin{array}{r}
A+B=0 \tag{13}\\
-A K=1
\end{array}\right.
$$

solving the second equation in (13) for A yields

$$
\begin{equation*}
A=-\frac{1}{K} \tag{14}
\end{equation*}
$$

Substituting the value for A in (14) into the first equation in (13) and solving for B yields

$$
\begin{equation*}
B=\frac{1}{K} . \tag{15}
\end{equation*}
$$

Substituting the values for A and B in (14) and (15), respectively, into (11) yields the integration formula

$$
\begin{equation*}
\int \frac{1}{N(N-K)} d N=-\frac{1}{K} \ln |N|+\frac{1}{K} \ln |N-K|+c, \tag{16}
\end{equation*}
$$

for arbitrary constant c. We can then use (16) to obtain from (9)

$$
\begin{align*}
T & =-\frac{K}{r}\left[-\frac{1}{K} \ln |N|+\frac{1}{K} \ln |N-K|\right]_{N_{1}}^{N_{2}} \\
& =\frac{1}{r}[\ln |N|-\ln |N-K|]_{N_{1}}^{N_{2}} \tag{17}\\
& =\frac{1}{r}\left[\ln \frac{|N|}{|N-K|}\right]_{N_{1}}^{N_{2}}
\end{align*}
$$

where we have used the properties of the natural logarithm function in the last step in (17). It follows from the calculations in (17) that

$$
\begin{equation*}
T=\frac{1}{r}\left[\ln \frac{\left|N_{2}\right|}{\left|N_{2}-K\right|}-\ln \frac{\left|N_{1}\right|}{\left|N_{1}-K\right|}\right] . \tag{18}
\end{equation*}
$$

For the case in which $N_{1}=K / 4$ and $N_{2}=K / 2$, we obtain from (18) that

$$
T=\frac{1}{r}\left[\ln \frac{K / 2}{K / 2}-\ln \frac{K / 4}{3 K / 4}\right]=\frac{\ln 3}{r} .
$$

(b) What happens to T in (7) as N_{2} tends to K ?

Solution: Use the formula for T in (18) to compute

$$
\lim _{N_{2} \rightarrow K} T=\lim _{N_{2} \rightarrow K} \frac{1}{r}\left[\ln \frac{\left|N_{2}\right|}{\left|N_{2}-K\right|}-\ln \frac{\left|N_{1}\right|}{\left|N_{1}-K\right|}\right]=+\infty
$$

since $\left|N_{2}-K\right| \rightarrow 0$ as $N_{2} \rightarrow K$. Thus, T tends to infinity as $N_{2} \rightarrow K$.

