Solutions to Assignment \#15

1. Evaluate the integral $\int \frac{y^{2}+1}{y^{3}-4 y^{2}+y+6} d y$, by first finding constants A, B and C such that

$$
\begin{equation*}
\frac{y^{2}+1}{y^{3}-4 y^{2}+y+6}=\frac{A}{y-2}+\frac{B}{y+1}+\frac{C}{y-3} . \tag{1}
\end{equation*}
$$

Solution: It follows from (1) that

$$
\begin{equation*}
\int \frac{y^{2}+1}{y^{3}-4 y^{2}+y+6} d y=A \ln |y-2|+B \ln |y+1|+C \ln |y-3|+c \tag{2}
\end{equation*}
$$

for arbitrary constant c. In order to determine the values of A, B and C, we multiply on both sides of (1) by $(y-2)(y+1)(y-3)$ to obtain

$$
y^{2}+1=A(y+1)(y-3)+B(y-2)(y-3)+C(y-2)(y+1)
$$

or

$$
y^{2}+1=A\left(y^{2}-2 y-3\right)+B\left(y^{2}-5 y+6\right)+C\left(y^{2}-y-2\right)
$$

or

$$
\begin{equation*}
y^{2}+1=(A+B+C) y^{2}+(-2 A-5 B-C) y+(-3 A+6 B-2 C) \tag{3}
\end{equation*}
$$

after simplifying. Equating corresponding coefficients of the polynomials in (3) yields the system

$$
\left\{\begin{align*}
A+B+C & =1 \tag{4}\\
-2 A-5 B-C & =0 \\
-3 A+6 B-2 C & =1
\end{align*}\right.
$$

Solving the system in (4) yields

$$
\begin{equation*}
A=-\frac{5}{3}, \quad B=\frac{1}{6} \quad \text { and } \quad C=\frac{5}{2} . \tag{5}
\end{equation*}
$$

It then follows from (1) and (5) that

$$
\int \frac{y^{2}+1}{y^{3}-4 y^{2}+y+6} d y=-\frac{5}{3} \ln |y-2|+\frac{1}{6} \ln |y+1|+\frac{5}{2} \ln |y-3|+c .
$$

2. Evaluate the integral $\int \frac{y^{2}-y+6}{y^{3}-5 y^{2}+y-5} d y$, by first finding constants A, B and C such that

$$
\begin{equation*}
\frac{y^{2}-y+6}{y^{3}-5 y^{2}+y-5}=\frac{A}{y-5}+\frac{B y+C}{y^{2}+1} \tag{6}
\end{equation*}
$$

Solution: In order to determine the values of A, B and C, we multiply on both sides of (6) by $(y-5)\left(y^{2}+1\right)$ to obtain

$$
y^{2}-y+6=A\left(y^{2}+1\right)+(B y+C)(y-5),
$$

or

$$
y^{2}-y+6=A y^{2}+A+B y^{2}-5 B y+C y-5 C,
$$

or

$$
\begin{equation*}
y^{2}-y+6=(A+B) y^{2}+(-5 B+C) y+(A-5 C) \tag{7}
\end{equation*}
$$

after simplifying. Equating corresponding coefficients of the polynomials in (7) yields the system

$$
\left\{\begin{align*}
A+B & =1 \tag{8}\\
-5 B+C & =-1 \\
A-5 C & =6 .
\end{align*}\right.
$$

Solving the system in (8) yields

$$
\begin{equation*}
A=1, \quad B=0 \quad \text { and } \quad C=-1 \tag{9}
\end{equation*}
$$

We then obtain from (6)

$$
\begin{equation*}
\frac{y^{2}-y+6}{y^{3}-5 y^{2}+y-5}=\frac{1}{y-5}-\frac{1}{y^{2}+1} \tag{10}
\end{equation*}
$$

Integration on both sides of (10) then yields

$$
\int \frac{y^{2}-y+6}{y^{3}-5 y^{2}+y-5} d y=\ln |y-5|-\arctan (y)+c
$$

for arbitrary constant c.
3. Solve the initial value problem

$$
\begin{equation*}
\frac{d y}{d t}=y-\frac{1}{3} y^{2}, \quad y(0)=1 \tag{11}
\end{equation*}
$$

and sketch the solution.
Solution: First, rewrite the differential equation in (11) as

$$
\frac{d y}{d t}=-\frac{1}{3} y(y-3),
$$

and the separate variables to get

$$
\begin{equation*}
\int \frac{1}{y(y-3)} d y=-\frac{1}{3} \int d t \tag{12}
\end{equation*}
$$

In order to evaluate the integral on the left-hand side of (12), we decompose the integrand by means of partial fractions as

$$
\begin{equation*}
\frac{1}{y(y-3)}=\frac{A}{y}+\frac{B}{y-3}, \tag{13}
\end{equation*}
$$

where the constants A and B are to be determined. Once A and B are determined, the integral on the left-hand side of (12) can be evaluated by virtue of (13) to obtain

$$
\begin{equation*}
\int \frac{1}{y(y-3)} d y=A \ln |y|+B \ln |y-3|+c \tag{14}
\end{equation*}
$$

for arbitrary constant c.
In order to determine A and B, multiply on both sides of the equation in (13) by $y(y-3)$ to obtain

$$
1=A(y-3)+B y
$$

or

$$
\begin{equation*}
0 y+1=(A+B) y-3 A \tag{15}
\end{equation*}
$$

Equating corresponding coefficients for the polynomials on the each side of (15) yields the system

$$
\left\{\begin{array}{r}
A+B=0 \tag{16}\\
-3 A=1
\end{array}\right.
$$

Solving the system in (16) yields

$$
\begin{equation*}
A=-\frac{1}{3} \quad \text { and } \quad B=\frac{1}{3} . \tag{17}
\end{equation*}
$$

Substituting the values for A and B in (17) into (14) yields the left-hand side of (12) so that, integrating both sides of (12),

$$
\begin{equation*}
-\frac{1}{3} \ln |y|+\frac{1}{3} \ln |y-3|=-\frac{1}{3} t+c_{1}, \tag{18}
\end{equation*}
$$

for arbitrary constant c_{1}. Next, multiply on both sides of (18) by 3 and simplify to get

$$
\begin{equation*}
\ln \left(\frac{|y-3|}{|y|}\right)=-t+c_{2} \tag{19}
\end{equation*}
$$

for arbitrary constant c_{2}. Apply the exponential function on both sides of (19) to obtain

$$
\begin{equation*}
\frac{|y-3|}{|y|}=c_{3} e^{-t} \tag{20}
\end{equation*}
$$

where we have set $c_{3}=e^{c_{2}}$. Using the continuity of y and the exponential function we get from (20) that

$$
\begin{equation*}
\frac{y-3}{y}=c e^{-t} \tag{21}
\end{equation*}
$$

for arbitrary constant c. Solving for y in (21) yields the general solution,

$$
\begin{equation*}
y(t)=\frac{3}{1-c e^{-t}}, \tag{22}
\end{equation*}
$$

for the differential equation in (11). Substituting the initial condition in (11) into (21), we get

$$
\begin{equation*}
c=-2 \tag{23}
\end{equation*}
$$

Substituting the value of c in (22) into (22) yields a solution to the initial value problem in (11) given by

$$
\begin{equation*}
y(t)=\frac{3}{1+2 e^{-t}}, \quad \text { for } t \in \mathbb{R} \tag{24}
\end{equation*}
$$

A sketch of the graph of $y=y(t)$, where $y(t)$ is given in (24) is given in Figure 1 on page 5 .
4. Use partial fractions to evaluate the integral $\int \frac{y^{3}+3}{y^{2}-3 y+2} d y$.

Suggestion: First divide the denominator into the numerator to obtain

$$
\begin{equation*}
\frac{y^{3}+3}{y^{2}-3 y+2}=y+3+\frac{7 y-3}{y^{2}-3 y+2} . \tag{25}
\end{equation*}
$$

Solution: Integration on both sides of (25) yields

$$
\begin{equation*}
\int \frac{y^{3}+3}{y^{2}-3 y+2} d y=\frac{1}{2} y^{2}+3 y+\int \frac{7 y-3}{y^{2}-3 y+2} d y \tag{26}
\end{equation*}
$$

Figure 1: Sketch of solution to IVP (11)

In order to evaluate the right-most integral in (26), we first factor the denominator in the integrand to obtain

$$
\begin{equation*}
\frac{7 y-3}{y^{2}-3 y+2}=\frac{7 y-3}{(y-1)(y-2)} . \tag{27}
\end{equation*}
$$

Next, decompose the right-hand side of (27) into partial fractions to obtain

$$
\begin{equation*}
\frac{7 y-3}{(y-1)(y-2)}=\frac{A}{y-1}+\frac{B}{y-2}, \tag{28}
\end{equation*}
$$

where A and B are to be determined. It then follows from (27) and (28) that

$$
\begin{equation*}
\int \frac{7 y-3}{y^{2}-3 y+2} d y=A \ln |y-1|+B \ln |y-2|+c \tag{29}
\end{equation*}
$$

where c is an arbitrary constant.
In order to determine A and B, multiply on both sides of the equation in (28) by $(y-1)(y-2)$ to obtain

$$
7 y-3=A(y-2)+B(y-1)
$$

or

$$
\begin{equation*}
7 y-3=(A+B) y-2 A-B \tag{30}
\end{equation*}
$$

Equating corresponding coefficients for the polynomials on the each side of (30) yields the system

$$
\left\{\begin{align*}
A+B & =7 \tag{31}\\
-2 A-B & =-3 .
\end{align*}\right.
$$

Solving the system in (31) yields

$$
\begin{equation*}
A=-4 \quad \text { and } \quad B=11 \tag{32}
\end{equation*}
$$

Substituting the values for A and B in (33) into (29) yields

$$
\begin{equation*}
\int \frac{7 y-3}{y^{2}-3 y+2} d y=-4 \ln |y-1|+11 \ln |y-2|+c \tag{33}
\end{equation*}
$$

for arbitrary constant c. Combining (26) and (33)

$$
\int \frac{y^{3}+3}{y^{2}-3 y+2} d y=\frac{1}{2} y^{2}+3 y+-4 \ln |y-1|+11 \ln |y-2|+c
$$

for arbitrary constant c.
5. Use partial fractions to evaluate the integral $\int \frac{1}{1-y^{2}} d y$.

Solution: First, rewrite the integral as

$$
\begin{equation*}
\int \frac{1}{1-y^{2}} d y=-\int \frac{1}{y^{2}-1} d y \tag{34}
\end{equation*}
$$

Factor the denominator in the integrand in the right-most integral in (34) to get

$$
\begin{equation*}
\frac{1}{y^{2}-1}=\frac{1}{(y+1)(y-1)} \tag{35}
\end{equation*}
$$

We decompose the right-hand side in (35) by means of partial fractions as

$$
\begin{equation*}
\frac{1}{(y+1)(y-1)}=\frac{A}{y+1}+\frac{B}{y-1} \tag{36}
\end{equation*}
$$

where the constants A and B are to be determined. Once A and B are determined, the right-most integral in (34) can be evaluated by virtue of (35) and (36) to obtain

$$
\begin{equation*}
\int \frac{1}{y^{2}-1} d y=A \ln |y+1|+B \ln |y-1|+c \tag{37}
\end{equation*}
$$

for arbitrary constant c.
In order to determine A and B, multiply on both sides of the equation in (36) by $(y+1)(y-1)$ to obtain

$$
1=A(y-1)+B(y+1)
$$

or

$$
\begin{equation*}
0 y+1=(A+B) y+B-A \tag{38}
\end{equation*}
$$

Equating corresponding coefficients for the polynomials on the each side of (38) yields the system

$$
\left\{\begin{array}{l}
A+B=0 \tag{39}\\
B-A=1
\end{array}\right.
$$

Solving the system in (39) yields

$$
\begin{equation*}
A=-\frac{1}{2} \quad \text { and } \quad B=\frac{1}{2} . \tag{40}
\end{equation*}
$$

Substituting the values for A and B in (40) into (37) yields

$$
\begin{equation*}
\int \frac{1}{y^{2}-1} d y=-\frac{1}{2} \ln |y+1|+\frac{1}{2} \ln |y-1|+c \tag{41}
\end{equation*}
$$

for arbitrary constant c. It then follows from (34) and (41) that

$$
\int \frac{1}{1-y^{2}} d y=\frac{1}{2} \ln |y+1|-\frac{1}{2} \ln |y-1|+c
$$

for arbitrary constant c, or

$$
\int \frac{1}{1-y^{2}} d y=\frac{1}{2} \ln \left(\frac{|y+1|}{|y-1|}\right)+c .
$$

