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Solutions to Assignment #16

1. Logistic Growth'. Suppose that the growth of a certain animal population is
governed by the differential equation

1000 dN
—— =100—- N 1

where N (t) denote the number of individuals in the population at time t.
(a) Suppose there are 200 individuals in the population at time ¢ = 0. Sketch
the graph of N = N(t).
Solution: The equation in (1) describes logistic growth in a population
with intrinsic growth rate r = 100/1000 and carrying capacity K = 100.

A sketch of the solution with initial population N(0) = 200 is shown in
Figure 1. 0

N

100¥

Figure 1: Sketch of Solution to (1) with N, = 200

(b) Will there ever be more than 200 individuals in the population? Will there
ever be fewer than 100 individuals? Explain your answer.
Solution: The sketch of the solution to (1) subject to the initial condition

N(0) = 200 shows that the population size will never be above 200 or below
100. U

2. Spread of a viral infection®. Let I(t) denote the total number of people infected
with a virus. Assume that () grows according to a logistic model. Suppose

! Adapted from Problem 6 on page 521 in Hughes-Hallett et al, Calculus, Third Edition, Wiley,
2002

2Adapted from Problem 7 on page 521 in Hughes-Hallett et al, Calculus, Third Edition, Wiley,
2002
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that 10 people have the virus originally and that, in the early stages of the
infection the number of infected people doubles every 3 days. It is also estimated
that, in the long run 5000 people in a given area will become infected.

(a)

Solve an appropriate logistic model to find a formula for computing I(¢),
where ¢ is the time from the initial infection measured in weeks. Sketch
the graph of I(t).

Solution: The function I solves the logistic equation
dl
—=rl(K -1 2
= rI(K - 1), &)
where r is the intrinsic growth rate of infection and K is the limiting
number of people who will become infected in the long run. Thus,

K = 5000. (3)

In order to estimate r, we approximate the spread of the infection with an
exponential model with doubling time of 3 days or 3/7 weeks. Thus,

- In2

= — =161 4
37 = L6173, (4)

r

in units of 1/week.
The solution to (2) subject to the initial condition I(0) = I, is given by

I,K
I(t) =
() Io+(K_IO>€—rt’

for t € R. (5)

Substituting the values of I, = 10, and K and r given in (3) and (4),
respectively, into (5) yields the solution

B 50000
10+ (4990)e— 16173t

() for t € R. (6)

A sketch of the graph of the function in (6) is pictured in Figure 2. O

Estimate the time when the rate of infected people begins to decrease.

Solution: The rate of infection will begin to decrease when the number
of infected people is half of the limiting value; namely, when

I(t) = 2500,
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Figure 2: Sketch of function in (6)

or, according to (6), when

50000
10 + (4990) e~ L6173

= 2500. (7)

Solving the equation in (7) yields

t = To173 In(499) = 3.84 weeks.
Thus, the rate of infection will begin to decrease in about 3 weeks and 5
days and 21 hours. 0

3. Non-Logistic Growth®. There are many classes of organisms whose birth rate
is not proportional to the population size. For example, suppose that each
member of the population requires a partner for reproduction, and each member
relies on chance encounters for meeting a mate. Assume that the expected
number of encounters is proportional to the product of numbers of female and
male members in the population, and that these are equally distributed; hence,
the number of encounters will be proportional to the square of the size of the
population.

Use a conservation principle to derive the population model

dN
“ — aN? —bN

3Adapted from Problem 12 on page 39 in Braun, Differential Equations and their Applications,
Fourth Edition, Springer—Verlag, 1993
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where a and b are positive constants. Explain your reasoning.

Solution: Begin with the conservation principle

dN

e Rate of individuals in — Rate of individuals out. 9)

In this case we have

Rate of individuals in = aN?, (10)

and
Rate of individuals outbN, (11)

where a and b are positive constants of proportionality. The equation in (8)
follows from (9) after substituting (10) and (11). O

4. For the equation in (8),

(a) find the values of N for which the population size is not changing;
Solution: Rewrite the equation in (8) as

dN b
— =aN|N—--|. 12
a ( a> (12)
dN b
We see from (12) that pre 0 when N =0or N = o O

(b) find the range of positive values of N for which the population size is
increasing, and those for which it is decreasing;

dN b dN
Solution: We see from (12) that = > 0 for N > —, and o < 0 for
a
b b
N < —. This, the population size increases for N > —, and decreases for
a a
b
N < —. U
a

(c) find ranges of positive values of N for which the graph of N = N(¢) is
concave up, and those for which it is concave down;

Solution: Differentiate on both sides of (8) with respect to t to obtain
d*N dN dN

e Ny Nl 13
e e T Tar (13)
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where we have applied the Chain Rule. The equation in (13) can be rewrit-

ten as PN b\ dN
— =2a(N—— | —. 14
az ( za) dt (14)
o . dN . . :
Substituting the expression for — b (12) into (14) then yields
d*N b b
——=2a>N(N—-— ) (N—-—]. 15
dt? ¢ ( 2a> ( a) (15)
. . . d®N .
In view of (15) we see that, for positive values of N, the sign of — is

2
determined by the signs of the two right-most factors in (15). The signs of
these two factors are displayed in Table 1. The concavity of of the graph

N - — _
5 + +
b
N —— — — +
a
0 b/2a b/a
N"(t) + - +
graph of N(t) concave—up concave—down concave—up

Table 1: Concavity of the graph of N = N(t)

of N = N(t) is also displayed in Table 1. From that table we get that the
graph of N = N(t) is concave up for

b b
O<N<— o N>-—,
2a a
and concave down for
b b
— < N < -
2a a

U
(d) Sketch possible solutions.

Solution: Putting together the information on concavity in Table 1 and
the fact that N(t) increases for N > b/a and decreases for 0 < N < b/a,
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/

Figure 3: Possible Solutions to Logistic equation

we obtain the sketches of possible solutions to the equation in (8) displayed
in Figure 3.

l

5. For the equation in (8),

(a) use separation of variables and partial fractions to find a solution satisfying
the initial condition N(0) = N,, for N, > 0.

Solution: Separate variable in the equation in (12) to obtain

/m dN:/adt. (16)

Use partial fractions in the integrand on the left-hand side to (16) and
integrate on the right—hand side to get to get

a 1 1

for some constant ¢;. Evaluate the integral on the left-hand side of (17)

and simplify to get
N —1b
In <M> — bt o, (18)

|V
for some constant cy. Next, take the exponential function on both sides of
(18) to get
|N —b/dl _ bt

1
|N| C3 €, (9)
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where we have set ¢z = e.
Using the continuity of N and of the exponential function we deduce from
(19) that

N ;Vb/a —©c €a2t/b’
for some constant ¢. The equation in (20) can now be solved for N as a
function of ¢ to get

(20)

b/a
N(t) = ———. 21
0= 2 (21)
Next, use the initial condition N(0) = N, to obtain from (20) that
N, —b/a
= — 22
e 2
Substituting the value of ¢ in (22) into (21) yields
Nyb/a
N(t) = . 2
O = N, ¥ W Ny 23)
U

What happens to N(t) as t — oo if N, > b/a? What happens if N, < b/a?
Why is b/a called a threshold value?
Solution: We first consider the case in which 0 < N, < b/a. In this case,
the function in (23) is defined for all values of ¢ and

lim N(t) =0,

t—o00
since b > 0.

On the other hand, is N, > b/a, then the function in (23) ceases to exist
when

(N, — bja) " = N,.

As t approaches that time, N(t) — oo. Thus, depending on whether
N, < b/a or N, > b/a, the population will eventually go extinct or it
will have unlimited growth in a finite time. Thus, b/a is the threshold
population value which determines growth or extinction. 0



