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Solutions to Assignment #16

1. Logistic Growth1. Suppose that the growth of a certain animal population is
governed by the differential equation

1000

N

dN

dt
= 100−N, (1)

where N(t) denote the number of individuals in the population at time t.

(a) Suppose there are 200 individuals in the population at time t = 0. Sketch
the graph of N = N(t).

Solution: The equation in (1) describes logistic growth in a population
with intrinsic growth rate r = 100/1000 and carrying capacity K = 100.
A sketch of the solution with initial population N(0) = 200 is shown in
Figure 1. �
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Figure 1: Sketch of Solution to (1) with No = 200

(b) Will there ever be more than 200 individuals in the population? Will there
ever be fewer than 100 individuals? Explain your answer.

Solution: The sketch of the solution to (1) subject to the initial condition
N(0) = 200 shows that the population size will never be above 200 or below
100. �

2. Spread of a viral infection2. Let I(t) denote the total number of people infected
with a virus. Assume that I(t) grows according to a logistic model. Suppose

1Adapted from Problem 6 on page 521 in Hughes–Hallett et al, Calculus, Third Edition, Wiley,
2002

2Adapted from Problem 7 on page 521 in Hughes–Hallett et al, Calculus, Third Edition, Wiley,
2002
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that 10 people have the virus originally and that, in the early stages of the
infection the number of infected people doubles every 3 days. It is also estimated
that, in the long run 5000 people in a given area will become infected.

(a) Solve an appropriate logistic model to find a formula for computing I(t),
where t is the time from the initial infection measured in weeks. Sketch
the graph of I(t).

Solution: The function I solves the logistic equation

dI

dt
= rI(K − I), (2)

where r is the intrinsic growth rate of infection and K is the limiting
number of people who will become infected in the long run. Thus,

K =̇ 5000. (3)

In order to estimate r, we approximate the spread of the infection with an
exponential model with doubling time of 3 days or 3/7 weeks. Thus,

r =̇
ln 2

3/7
=̇ 1.6173, (4)

in units of 1/week.

The solution to (2) subject to the initial condition I(0) = Io is given by

I(t) =
IoK

Io + (K − Io)e−rt
, for t ∈ R. (5)

Substituting the values of Io = 10, and K and r given in (3) and (4),
respectively, into (5) yields the solution

I(t) =
50000

10 + (4990)e−1.6173t
, for t ∈ R. (6)

A sketch of the graph of the function in (6) is pictured in Figure 2. �

(b) Estimate the time when the rate of infected people begins to decrease.

Solution: The rate of infection will begin to decrease when the number
of infected people is half of the limiting value; namely, when

I(t) = 2500,
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Figure 2: Sketch of function in (6)

or, according to (6), when

50000

10 + (4990)e−1.6173t
= 2500. (7)

Solving the equation in (7) yields

t =̇
1

1.6173
ln(499) =̇ 3.84 weeks.

Thus, the rate of infection will begin to decrease in about 3 weeks and 5
days and 21 hours. �

3. Non–Logistic Growth3. There are many classes of organisms whose birth rate
is not proportional to the population size. For example, suppose that each
member of the population requires a partner for reproduction, and each member
relies on chance encounters for meeting a mate. Assume that the expected
number of encounters is proportional to the product of numbers of female and
male members in the population, and that these are equally distributed; hence,
the number of encounters will be proportional to the square of the size of the
population.

Use a conservation principle to derive the population model

dN

dt
= aN2 − bN, (8)

3Adapted from Problem 12 on page 39 in Braun, Differential Equations and their Applications,
Fourth Edition, Springer–Verlag, 1993
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where a and b are positive constants. Explain your reasoning.

Solution: Begin with the conservation principle

dN

dt
= Rate of individuals in− Rate of individuals out. (9)

In this case we have

Rate of individuals in = aN2, (10)

and
Rate of individuals outbN, (11)

where a and b are positive constants of proportionality. The equation in (8)
follows from (9) after substituting (10) and (11). �

4. For the equation in (8),

(a) find the values of N for which the population size is not changing;

Solution: Rewrite the equation in (8) as

dN

dt
= aN

(
N − b

a

)
. (12)

We see from (12) that
dN

dt
= 0 when N = 0 or N =

b

a
. �

(b) find the range of positive values of N for which the population size is
increasing, and those for which it is decreasing;

Solution: We see from (12) that
dN

dt
> 0 for N >

b

a
, and

dN

dt
< 0 for

N <
b

a
. This, the population size increases for N >

b

a
, and decreases for

N <
b

a
. �

(c) find ranges of positive values of N for which the graph of N = N(t) is
concave up, and those for which it is concave down;

Solution: Differentiate on both sides of (8) with respect to t to obtain

d2N

dt2
= 2aN

dN

dt
− b

dN

dt
, (13)
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where we have applied the Chain Rule. The equation in (13) can be rewrit-
ten as

d2N

dt2
= 2a

(
N − b

2a

)
dN

dt
. (14)

Substituting the expression for
dN

dt
in (12) into (14) then yields

d2N

dt2
= 2a2N

(
N − b

2a

)(
N − b

a

)
. (15)

In view of (15) we see that, for positive values of N , the sign of
d2N

dt2
is

determined by the signs of the two right–most factors in (15). The signs of
these two factors are displayed in Table 1. The concavity of of the graph

N − b

2a
− + +

N − b

a
− − +

0 b/2a b/a
N ′′(t) + − +

graph of N(t) concave–up concave–down concave–up

Table 1: Concavity of the graph of N = N(t)

of N = N(t) is also displayed in Table 1. From that table we get that the
graph of N = N(t) is concave up for

0 < N <
b

2a
or N >

b

a
,

and concave down for
b

2a
< N <

b

a
.

�

(d) Sketch possible solutions.

Solution: Putting together the information on concavity in Table 1 and
the fact that N(t) increases for N > b/a and decreases for 0 < N < b/a,
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Figure 3: Possible Solutions to Logistic equation

we obtain the sketches of possible solutions to the equation in (8) displayed
in Figure 3.

�

5. For the equation in (8),

(a) use separation of variables and partial fractions to find a solution satisfying
the initial condition N(0) = No, for No > 0.

Solution: Separate variable in the equation in (12) to obtain∫
1

N(N − b/a)
dN =

∫
a dt. (16)

Use partial fractions in the integrand on the left–hand side to (16) and
integrate on the right–hand side to get to get

a

b

∫ {
− 1

N
+

1

N − b/a

}
dN = at + c1, (17)

for some constant c1. Evaluate the integral on the left–hand side of (17)
and simplify to get

ln

(
|N − b/a|
|N |

)
= bt + c2, (18)

for some constant c2. Next, take the exponential function on both sides of
(18) to get

|N − b/a|
|N |

= c3 ebt, (19)
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where we have set c3 = ec2 .

Using the continuity of N and of the exponential function we deduce from
(19) that

N − b/a

N
= c ea

2t/b, (20)

for some constant c. The equation in (20) can now be solved for N as a
function of t to get

N(t) =
b/a

1− c ebt
. (21)

Next, use the initial condition N(0) = No to obtain from (20) that

c =
No − b/a

No

. (22)

Substituting the value of c in (22) into (21) yields

N(t) =
Nob/a

No + (b/a−No) ebt
. (23)

�

(b) What happens to N(t) as t→∞ if No > b/a? What happens if No < b/a?
Why is b/a called a threshold value?

Solution: We first consider the case in which 0 < No < b/a. In this case,
the function in (23) is defined for all values of t and

lim
t→∞

N(t) = 0,

since b > 0.

On the other hand, is No > b/a, then the function in (23) ceases to exist
when

(No − b/a) ebt = No.

As t approaches that time, N(t) → ∞. Thus, depending on whether
No < b/a or No > b/a, the population will eventually go extinct or it
will have unlimited growth in a finite time. Thus, b/a is the threshold
population value which determines growth or extinction. �


