Solutions to Assignment \#17

1. Let $f(x)=\frac{1}{\sqrt{1+x}}$ for $x>-1$. Give the linear approximation to f around $a=0$.
Solution: Compute

$$
L(x ; 0)=f(0)+f^{\prime}(0) x
$$

where

$$
f^{\prime}(x)=-\frac{1}{2(1+x)^{3 / 2}}, \quad \text { for } x>-1
$$

Thus,

$$
L(x ; 0)=1-\frac{1}{2} x, \quad \text { for } x \in \mathbb{R}
$$

2. Let $f(x)=e^{-x}$ for all $x \in \mathbb{R}$. Give the linear approximation to f around $a=1$.

Solution: Compute

$$
L(x ; 1)=f(1)+f^{\prime}(1)(x-1)
$$

where

$$
f^{\prime}(x)=-e^{-x}, \quad \text { for } x \in \mathbb{R}
$$

Thus,

$$
L(x ; 1)=e^{-1}-e^{-1}(x-1), \quad \text { for } x \in \mathbb{R}
$$

or

$$
L(x ; 1)=e^{-1}(2-x), \quad \text { for } x \in \mathbb{R}
$$

3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=\sin (x)$ for all $x \in \mathbb{R}$.
(a) Give the linear approximation for $f(x)$ near $a=\pi / 6$.

Solution: Compute

$$
L(x ; \pi / 6)=f(\pi / 6)+f^{\prime}(\pi / 6)\left(x-\frac{\pi}{6}\right), \quad \text { for } x \in \mathbb{R}
$$

where

$$
f^{\prime}(x)=\cos x, \quad \text { for } x \in \mathbb{R}
$$

Thus,

$$
L(x ; \pi / 6)=\sin (\pi / 6)+\cos (\pi / 6)\left(x-\frac{\pi}{6}\right), \quad \text { for } x \in \mathbb{R}
$$

or

$$
\begin{equation*}
L(x ; \pi / 6)=\frac{1}{2}+\frac{\sqrt{3}}{2}\left(x-\frac{\pi}{6}\right), \quad \text { for } x \in \mathbb{R} \tag{1}
\end{equation*}
$$

(b) Estimate the error term $E(x ; \pi / 6)=\int_{\pi / 6}^{x} f^{\prime \prime}(t)(x-t) \mathrm{d} t$.

Solution: Use the estimate

$$
|E(x ; \pi / 6)| \leqslant \frac{M}{2}\left|x-\frac{\pi}{6}\right|^{2}, \quad \text { for } x \in \mathbb{R}
$$

where $M=1$, since

$$
\left|\sin ^{\prime \prime}(t)\right|=|\sin (t)| \leqslant 1, \quad \text { for } t \in \mathbb{R}
$$

Thus,

$$
\begin{equation*}
|E(x ; \pi / 6)| \leqslant \frac{1}{2}\left|x-\frac{\pi}{6}\right|^{2}, \quad \text { for } x \in \mathbb{R} \tag{2}
\end{equation*}
$$

(c) How far can x be from $\pi / 6$ so that the approximation is good to two decimal places?
Solution: We want

$$
|E(x, \pi / 6)|<0.005
$$

so that, in view of (2),

$$
\frac{1}{2}\left|x-\frac{\pi}{6}\right|^{2}<0.005
$$

from which we get

$$
\left|x-\frac{\pi}{6}\right|<0.1
$$

Thus, if x is within 0.1 of $\pi / 6$, the linear approximation to $\sin x$ will be accurate to at least two decimal places.
(d) Estimate $\sin (0.51)$. Compare with the approximation obtained with a calculator.
Solution: Note that $\pi / 6$ is about 0.5236 . Thus, using the linear approximation to $\sin x$ at $a=\pi / 6$ in (1), we get that

$$
\sin (0.51) \approx L(0.51 ; \pi / 6)=\frac{1}{2}+\frac{\sqrt{3}}{2}(0.51-0.5236)
$$

so that

$$
\begin{equation*}
\sin (0.51) \approx 0.4882 \tag{3}
\end{equation*}
$$

Using the estimate for the error in the approximation in (2) we see that

$$
|E(0.51 ; \pi / 6)| \leqslant \frac{1}{2}|0.51-0.5236|^{2} \doteq 0.0001
$$

Thus, the estimate in (3) is accurate to three decimal places, so that

$$
\sin (0.51) \doteq 0.488
$$

The estimate given by a calculator is

$$
\sin (0.51) \doteq 0.48817724688290749450013023767457
$$

which agrees with the estimate in (3) to four decimal places after rounding up.
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=e^{-x}$ for all $x \in \mathbb{R}$.
(a) Give the linear approximation for $f(x)$ near $a=0$.

Solution: Compute

$$
L(x ; 0)=f(0)+f^{\prime}(0) x
$$

where

$$
f^{\prime}(x)=-e^{-x}, \quad \text { for } x \in \mathbb{R}
$$

Thus,

$$
\begin{equation*}
L(x ; 0)=1-x, \quad \text { for } x \in \mathbb{R} \tag{4}
\end{equation*}
$$

(b) Estimate the error term $E(x ; 0)=\int_{0}^{x} f^{\prime \prime}(t)(x-t) \mathrm{d} t$ for $x>0$, using the estimate $e^{-x} \leq 1$ for all $x \geq 0$.
Solution: We use the estimate

$$
|E(x ; 0)| \leqslant \frac{M}{2}|x|^{2}, \quad \text { for } x \geqslant 0
$$

where $M=1$, since

$$
\left|e^{-t}\right| \leqslant 1, \quad \text { for } t \geqslant 0
$$

Thus,

$$
\begin{equation*}
|E(x ; 0)| \leqslant \frac{1}{2}|x|^{2}, \quad \text { for } x \geqslant 0 \tag{5}
\end{equation*}
$$

(c) How far can $x>0$ be from 0 so that the approximation is good to two decimal places?
Solution: For two decimal places of accuracy, in view of (5), we want

$$
\frac{1}{2} x^{2}<0.005
$$

so that

$$
0 \leqslant x<0.1
$$

So, if $x>0$ is within 0.1 of 0 , then the linear approximation in (4) should yield an estimate to e^{-x} which is accurate to two decimal paces.
(d) Estimate $1 / e^{0.09}$. How accurate is your estimate?

Solution: Write $1 / e^{0.09}=e^{-0.09}$. Thus, using the linear approximation to e^{-x} in (4), we approximate

$$
\begin{equation*}
e^{-0.09} \approx 1-0.09=0.91 \tag{6}
\end{equation*}
$$

Using the error estimate in (5) we see that the error in the approximation in (6) is at most

$$
|E(0.09 ; 0)| \leqslant \frac{1}{2}|0.09|^{2} \approx 0.00405
$$

thus, the estimate in (6) is accurate to at least two decimal places.
5. Linear Approximations ${ }^{1}$. Multiply the linear approximation to e^{x} near $a=0$ by itself to obtain an approximation for $e^{2 x}$. Compare this with the linear approximation you obtain for the function $f f(x)=e^{2 x}$ for all $x \in \mathbb{R}$. Explain why the two approximations to $e^{2 x}$ are consistent, and discuss which one is more accurate.
Solution: Let $f(x)=e^{x}$ for all $x \in \mathbb{R}$. We first compute the linear to f near $a=0$:

$$
L(x ; 0)=f(0)+f^{\prime}(0) x, \quad \text { for all } x \in \mathbb{R},
$$

where

$$
f^{\prime}(x)=e^{x}, \quad \text { for all } x \in \mathbb{R}
$$

Thus,

$$
\begin{equation*}
L(x ; 0)=1+x, \quad \text { for } x \in \mathbb{R} \tag{7}
\end{equation*}
$$

[^0]Next, let $g(x)=e^{2 x}$ for all $x \in \mathbb{R}$, so that $g(x)=[f(x)]^{2}$ for all $x \in \mathbb{R}$. Thus,

$$
\begin{equation*}
[L(x ; 0)]^{2}=(1+x)^{2}=1+2 x+x^{2}, \quad \text { for } x \in \mathbb{R} \tag{8}
\end{equation*}
$$

is an approximation to g near $a=0$. On the other hand, the linear approximation to g at $a=0$ is

$$
L_{g}(x ; 0)=g(0)+g^{\prime}(0) x, \quad \text { for all } x \in \mathbb{R}
$$

where

$$
g^{\prime}(x)=2 e^{2 x}, \quad \text { for all } x \in \mathbb{R},
$$

so that,

$$
\begin{equation*}
L_{g}(x ; 0)=1+2 x, \quad \text { for } x \in \mathbb{R} \tag{9}
\end{equation*}
$$

The approximations $[L(x ; 0)]^{2}$ and $L_{g}(x ; 0)$ are consistent in the sense that the linear part of $[L(x ; 0)]^{2}$ agrees with the linear approximation $L_{g}(x ; 0)$.
To see which one of the approximations $[L(x ; 0)]^{2}$ and $L_{g}(x ; 0)$ is more accurate, observe that the graph of $y=g(x)$ at $x=0$ is concave up since $g^{\prime \prime}(0)=4>0$. However, the graph of $y=L_{g}(x)$ has no concavity at $x=0$, while that of $y=[L(x ; 0)]^{2}$ is also concave up at 0 . Hence, $[L(x ; 0)]^{2}$ is a more accurate approximation. Figure 1, generated with WolframAlpha ${ }^{\circledR}$, shows this argument graphically.

Figure 1: Sketch of the graphs of $y=e^{2 x}, y=[L(x ; 0)]^{2}$ and $y=L_{g}(x ; 0)$

[^0]: ${ }^{1}$ Adapted from Problem 8 on page 153 in Hughes-Hallett et al, Calculus, Third Edition, Wiley, 2002

