Solutions to Assignment \#2

1. Let $N(t)$ denote the size of a bacterial population in culture at time t. $N(t)$ can be measured by weight (e.g., grams), or by concentration via optical density measurements. Assume that $N=N(t)$ is twice differentiable and that it satisfies the following differential equation:

$$
\begin{equation*}
\frac{d N}{d t}=1.24 N-3.60 N^{2} \tag{1}
\end{equation*}
$$

where $N=N(t)$ measures the concentration of bacteria obtained via optical density measurements.
Using the information provided by the differential equation in (1) to answer the following questions.
(a) Find the values of N for which the population size is not changing; that is the values of N for which $\frac{d N}{d t}=0$.

Solution: Write the equation in (1) in the form

$$
\begin{equation*}
\frac{d N}{d t}=3.6 N\left(\frac{31}{90}-N\right) \tag{2}
\end{equation*}
$$

we see that $\frac{d N}{d t}=0$ when $N=0$ and $N=\frac{31}{90}$.
(b) Find the range of positive values of N for which the population size is increasing; that is the values of N for which $\frac{d N}{d t}>0$.

Solution: We see from (2) that $\frac{d N}{d t}>0$ for $0<N<\frac{31}{90}$; so that $N(t)$ increases for positive values of N less than $\frac{31}{90}$.
(c) Find the range of positive values of N for which the population size is decreasing; that is the values of N for which $\frac{d N}{d t}<0$.

Solution: According to (2), $\frac{d N}{d t}<0$ for $N>\frac{31}{90}$; it then follows from (2) that $N(t)$ decreases for values of N higher than $\frac{31}{90}$.
2. Use the differential equation in (1) and the Chain Rule to obtain an expression for the second derivative of N with respect to $t, \frac{d^{2} N}{d t^{2}}$. Put your answer in the form

$$
\begin{equation*}
\frac{d^{2} N}{d t^{2}}=g(N) \tag{3}
\end{equation*}
$$

where g is a function of a single variable.
Solution: Differentiate with respect to t on both sides of (1) to obtain

$$
\begin{equation*}
\frac{d^{2} N}{d t^{2}}=1.24 \frac{d N}{d t}-7.2 N \frac{d N}{d t} \tag{4}
\end{equation*}
$$

where we have used the Chain Rule when taking the derivative of the second term on the right-hand side (1). The right-hand side of the equation in (4) can be factored to yield

$$
\begin{equation*}
\frac{d^{2} N}{d t^{2}}=7.2\left(\frac{31}{180}-N\right) \frac{d N}{d t} \tag{5}
\end{equation*}
$$

Substituting the expression for $\frac{d N}{d t}$ in (2) into the right-hand side of the equation in (5) yields

$$
\frac{d^{2} N}{d t^{2}}=2(3.6)^{2} N\left(\frac{31}{180}-N\right)\left(\frac{31}{90}-N\right)
$$

which can be re-written as

$$
\begin{equation*}
\frac{d^{2} N}{d t^{2}}=2(3.6)^{2} N\left(N-\frac{31}{180}\right)\left(N-\frac{31}{90}\right) \tag{6}
\end{equation*}
$$

Set $K=\frac{31}{90}$; then, (6) can be written as

$$
\begin{equation*}
\frac{d^{2} N}{d t^{2}}=2(3.6)^{2} N\left(N-\frac{K}{2}\right)(N-K) \tag{7}
\end{equation*}
$$

3. Based on your answer to Problem 2 in the form of equation (5),
(a) find the values of N for which the graph of $N=N(t)$ (that is, graph of N as a function of t in the $t N$-plane), might have an inflection point; that is, find the values of N for which $\frac{d^{2} N}{d t^{2}}=0$;

Solution: According to (6), the graph of $N=N(t)$ might have an inflection point a the values

$$
N=0, \quad N=\frac{31}{180}, \quad \text { or } \quad N=\frac{31}{90} .
$$

(b) find the range of positive values of N for which the graph of $N=N(t)$ is concave up; that is the values of N for which $\frac{d^{2} N}{d t^{2}}>0$;

Solution: Set $K=\frac{31}{90}$; then, according to (7), the sign of the second derivative of N with respect to t, for positive values of N, is determined by the signs of the right-most factors on the right-hand side of (7):

$$
N-\frac{K}{2} \quad \text { and } \quad N-K
$$

The signs of these two factors are displayed in Table 1. The con-

$N-\frac{K}{2}$			+
$N-K$			

Table 1: Concavity of the graph of $N=N(t)$
cavity of of the graph of $N=N(t)$ is also displayed in Table 1. From that table we get that the graph of $N=N(t)$ is concave up for

$$
0<N<\frac{K}{2} \quad \text { or } \quad N>K
$$

(c) find the range of positive values of N for which the graph of $N=N(t)$ is concave down; that is the values of N for which $\frac{d^{2} N}{d t^{2}}<0$.

Solution: According to the results displayed in Table 1, the graph of $N=N(t)$ is concave down for

$$
\frac{K}{2}<N<K
$$

4. Suppose that $N=N(t)$ is a solution to the differential equation in (1). Use the qualitative information about the graph of $N=N(t)$ obtained in Problems 2 and 3 to sketch possible graphs of N for $N \geqslant 0$.
Based on your sketches, explain what the population model in (1) seems to be predicting.

Solution: Possible graphs of $N=N(t)$, for a solution of (1) are sketched in Figure 1. According to the sketches in Figure 1, the

Figure 1: Sketch of graph of $N=N(t)$
logistic model in (1) seems to predict that, for positive population values, the solution will tend towards $K=\frac{31}{90}$.
5. Analysis of certain one-compartment dilution model yields the differential equation

$$
\begin{equation*}
\frac{d Q}{d t}=a\left(1-\frac{Q}{L}\right) \tag{8}
\end{equation*}
$$

for positive constants a and L.
Assume that the differential equation in (8) has a solution, $Q=Q(t)$, which is twice-differentiable.
(a) Determine the value, or values, of Q for which $\frac{d Q}{d t}=0$.

Solution: Setting $\frac{d Q}{d t}=0$ in (8) leads to

$$
Q=L
$$

(b) Find a range of positive values of Q on which $Q(t)$ is increasing, and those values of Q for which $Q(t)$ is decreasing.

Solution: Writing (8) as

$$
\begin{equation*}
\frac{d Q}{d t}=\frac{a}{L}(L-Q) \tag{9}
\end{equation*}
$$

we see that $\frac{d Q}{d t}>0$ for $Q<L$; so that $Q(t)$ increases for values of Q less than L. Similarly, since $\frac{d Q}{d t}<0$ for $Q>L, Q(t)$ decreases for values of Q higher than L.
(c) Determine values of Q on which the graph of $Q=Q(t)$ is concave up, and those on which it is concave down.

Solution: Differentiating with respect to t on both sided of (9) we obtain

$$
\begin{equation*}
\frac{d^{2} Q}{d t^{2}}=-\frac{a}{L} \frac{d Q}{d t} \tag{10}
\end{equation*}
$$

which leads to

$$
\begin{equation*}
\frac{d^{2} Q}{d t^{2}}=-\frac{a^{2}}{L^{2}}(L-Q) \tag{11}
\end{equation*}
$$

by substitution of (9) into (10).
It follows from (11) that $\frac{d^{2} Q}{d t^{2}}<0$ for $Q<L$; so that the graph of $Q=Q(t)$ is concave down for values of Q less than L. On the other hand, since $\frac{d^{2} Q}{d t^{2}}>0$ for $Q>L$, the graph of $Q=Q(t)$ is concave up for values of Q bigger than L.
(d) Use the qualitative information obtained in parts (b) and (c) to sketch possible graphs of a solution, $Q=Q(t)$, of the differential equation in (8), for positive values of Q.
Based on your sketches, explain what the equation in (8) seems to be predicting.

Figure 2: Sketch of graph of $Q(t)$

Solution: Sketches of possible solutions to (8) are shown in Figure 2. The model in (8) seems to be predicting that the quantity $Q(t)$ will tend towards the value $Q=L$.

